
Matt Fuller,
Manfred Moser

& Martin Traverso

 Presto
 The Definitive Guide
SQL at Any Scale, on Any Storage,
in Any Environment

Compliments of

Virtual Book Tour

Starburst is hosting a virtual book
tour series where attendees will:

Register here to save your spot.

Meet the authors from the comfort
of your own home

Meet the Presto creators and
participate in an Ask Me Anything
(AMA) session with the book
authors + Presto creators

Meet special guest speakers from
your favorite podcasts who will
moderate the AMA

•

•

•

Matt
Fuller

Manfred
Moser

Martin
Traverso

Starburst presents Presto: The Definitive Guide

Meet the authors:

Register Now!

https://www.starburstdata.com/oreilly-book-tour-registration/?utm_campaign=O%27Reilly%20Book%20Tour&utm_source=O%27Reilly&utm_medium=book%20ad
https://www.starburstdata.com/oreilly-book-tour-registration/?utm_campaign=O%27Reilly%20Book%20Tour&utm_source=O%27Reilly&utm_medium=book%20ad

Praise for Presto: The Definitive Guide

This book provides a great introduction to Presto and teaches you everything
you need to know to start your successful usage of Presto.

—Dain Sundstrom and David Phillips, Creators of the Presto
Projects and Founders of the Presto Software Foundation

Presto plays a key role in enabling analysis at Pinterest. This book covers the Presto
essentials, from use cases through how to run Presto at massive scale.

—Ashish Kumar Singh, Tech Lead,
Bigdata Query Processing Platform, Pinterest

Presto has set the bar in both community-building and technical excellence for lightning-
fast analytical processing on stored data in modern cloud architectures. This book is

a must-read for companies looking to modernize their analytics stack.
—Jay Kreps, Cocreator of Apache Kafka,

Cofounder and CEO of Confluent

Presto has saved us all—both in academia and industry—countless hours of work,
allowing us all to avoid having to write code to manage distributed query processing.

We’re so grateful to have a high-quality open source distributed SQL engine to start
from, enabling us to focus on innovating in new areas instead of reinventing

the wheel for each new distributed data system project.
—Daniel Abadi, Professor of Computer Science,

University of Maryland, College Park

Matt Fuller, Manfred Moser, and Martin Traverso

Presto: The Definitive Guide
SQL at Any Scale, on Any Storage,

in Any Environment

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-49208-403-7

[LSI]

Presto: The Definitive Guide
by Matt Fuller, Manfred Moser, and Martin Traverso

Copyright © 2020 Matt Fuller, Martin Traverso, and Simpligility Technologies Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Jonathan Hassell
Development Editor: Michele Cronin
Production Editor: Elizabeth Kelly
Copyeditor: Sharon Wilkey
Proofreader: Piper Editorial

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2020: First Edition

Revision History for the First Edition
2020-04-03: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781492044277 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Presto: The Definitive Guide, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Starburst. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492044277
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. xiii

Preface. xv

Part I. Getting Started with Presto

1. Introducing Presto. 3
The Problems with Big Data 3
Presto to the Rescue 4

Designed for Performance and Scale 5
SQL-on-Anything 6
Separation of Data Storage and Query Compute Resources 7

Presto Use Cases 7
One SQL Analytics Access Point 7
Access Point to Data Warehouse and Source Systems 8
Provide SQL-Based Access to Anything 9
Federated Queries 10
Semantic Layer for a Virtual Data Warehouse 10
Data Lake Query Engine 11
SQL Conversions and ETL 11
Better Insights Due to Faster Response Times 11
Big Data, Machine Learning, and Artificial Intelligence 12
Other Use Cases 12

Presto Resources 12
Website 12
Documentation 13
Community Chat 13

v

Source Code, License, and Version 14
Contributing 14
Book Repository 15
Iris Data Set 15
Flight Data Set 16

A Brief History of Presto 16
Conclusion 17

2. Installing and Configuring Presto. 19
Trying Presto with the Docker Container 19
Installing from Archive File 20

Java Virtual Machine 20
Python 21
Installation 21
Configuration 22

Adding a Data Source 23
Running Presto 24
Conclusion 24

3. Using Presto. 25
Presto Command-Line Interface 25

Getting Started 25
Pagination 28
History 28
Additional Diagnostics 28
Executing Queries 29
Output Formats 30
Ignoring Errors 30

Presto JDBC Driver 30
Downloading and Registering the Driver 32
Establishing a Connection to Presto 32

Presto and ODBC 35
Client Libraries 35
Presto Web UI 35
SQL with Presto 36

Concepts 37
First Examples 37

Conclusion 40

vi | Table of Contents

Part II. Diving Deeper into Presto

4. Presto Architecture. 43
Coordinator and Workers in a Cluster 43
Coordinator 45
Discovery Service 46
Workers 46
Connector-Based Architecture 47
Catalogs, Schemas, and Tables 48
Query Execution Model 48
Query Planning 53

Parsing and Analysis 54
Initial Query Planning 54

Optimization Rules 57
Predicate Pushdown 57
Cross Join Elimination 58
TopN 58
Partial Aggregations 59

Implementation Rules 60
Lateral Join Decorrelation 60
Semi-Join (IN) Decorrelation 61

Cost-Based Optimizer 62
The Cost Concept 62
Cost of the Join 64
Table Statistics 65
Filter Statistics 66
Table Statistics for Partitioned Tables 67
Join Enumeration 68
Broadcast Versus Distributed Joins 68

Working with Table Statistics 70
Presto ANALYZE 70
Gathering Statistics When Writing to Disk 71
Hive ANALYZE 71
Displaying Table Statistics 72

Conclusion 72

5. Production-Ready Deployment. 73
Configuration Details 73
Server Configuration 73
Logging 75
Node Configuration 76
JVM Configuration 77

Table of Contents | vii

Launcher 77
Cluster Installation 79
RPM Installation 80

Installation Directory Structure 81
Configuration 82
Uninstall Presto 82

Installation in the Cloud 82
Cluster Sizing Considerations 83
Conclusion 84

6. Connectors. 85
Configuration 86
RDBMS Connector Example PostgreSQL 87

Query Pushdown 88
Parallelism and Concurrency 90
Other RDBMS Connectors 90
Security 92

Presto TPC-H and TPC-DS Connectors 92
Hive Connector for Distributed Storage Data Sources 93

Apache Hadoop and Hive 94
Hive Connector 95
Hive-Style Table Format 96
Managed and External Tables 97
Partitioned Data 98
Loading Data 100
File Formats and Compression 102
MinIO Example 103

Non-Relational Data Sources 104
Presto JMX Connector 104
Black Hole Connector 106
Memory Connector 107
Other Connectors 107
Conclusion 108

7. Advanced Connector Examples. 109
Connecting to HBase with Phoenix 109
Key-Value Store Connector Example: Accumulo 110

Using the Presto Accumulo Connector 113
Predicate Pushdown in Accumulo 115

Apache Cassandra Connector 117
Streaming System Connector Example: Kafka 118
Document Store Connector Example: Elasticsearch 120

viii | Table of Contents

Overview 120
Configuration and Usage 121
Query Processing 121
Full-Text Search 122
Summary 122

Query Federation in Presto 122
Extract, Transform, Load and Federated Queries 129
Conclusion 129

8. Using SQL in Presto. 131
Presto Statements 132
Presto System Tables 134
Catalogs 136
Schemas 137
Information Schema 138
Tables 139

Table and Column Properties 141
Copying an Existing Table 142
Creating a New Table from Query Results 143
Modifying a Table 144
Deleting a Table 144
Table Limitations from Connectors 144

Views 145
Session Information and Configuration 146
Data Types 147

Collection Data Types 149
Temporal Data Types 150
Type Casting 154

SELECT Statement Basics 155
WHERE Clause 157
GROUP BY and HAVING Clauses 158
ORDER BY and LIMIT Clauses 159
JOIN Statements 160
UNION, INTERSECT, and EXCEPT Clauses 161
Grouping Operations 162
WITH Clause 164
Subqueries 165

Scalar Subquery 165
EXISTS Subquery 166
Quantified Subquery 166

Deleting Data from a Table 167
Conclusion 167

Table of Contents | ix

9. Advanced SQL. 169
Functions and Operators Introduction 169
Scalar Functions and Operators 170
Boolean Operators 171
Logical Operators 172
Range Selection with the BETWEEN Statement 173
Value Detection with IS (NOT) NULL 174
Mathematical Functions and Operators 174
Trigonometric Functions 175
Constant and Random Functions 176
String Functions and Operators 176
Strings and Maps 177
Unicode 178
Regular Expressions 179
Unnesting Complex Data Types 182
JSON Functions 183
Date and Time Functions and Operators 184
Histograms 186
Aggregate Functions 187

Map Aggregate Functions 187
Approximate Aggregate Functions 189

Window Functions 190
Lambda Expressions 192
Geospatial Functions 193
Prepared Statements 194
Conclusion 196

Part III. Presto in Real-World Uses

10. Security. 199
Authentication 200

Password and LDAP Authentication 201
Authorization 203

System Access Control 204
Connector Access Control 207

Encryption 209
Encrypting Presto Client-to-Coordinator Communication 211
Creating Java Keystores and Java Truststores 214
Encrypting Communication Within the Presto Cluster 216

Certificate Authority Versus Self-Signed Certificates 217
Certificate Authentication 219

x | Table of Contents

Kerberos 222
Prerequisites 222
Kerberos Client Authentication 222
Cluster Internal Kerberos 223

Data Source Access and Configuration for Security 224
Kerberos Authentication with the Hive Connector 225

Hive Metastore Thrift Service Authentication 226
HDFS Authentication 227

Cluster Separation 227
Conclusion 227

11. Integrating Presto with Other Tools. 229
Queries, Visualizations, and More with Apache Superset 229
Performance Improvements with RubiX 230
Workflows with Apache Airflow 231
Embedded Presto Example: Amazon Athena 231
Starburst Enterprise Presto 235
Other Integration Examples 235
Custom Integrations 236
Conclusion 236

12. Presto in Production. 239
Monitoring with the Presto Web UI 239

Cluster-Level Details 240
Query List 241
Query Details View 244

Tuning Presto SQL Queries 251
Memory Management 254
Task Concurrency 258
Worker Scheduling 258

Scheduling Splits per Task and per Node 259
Local Scheduling 259

Network Data Exchange 259
Concurrency 260
Buffer Sizes 260

Tuning Java Virtual Machine 260
Resource Groups 262

Resource Group Definition 264
Scheduling Policy 265
Selector Rules Definition 265

Conclusion 266

Table of Contents | xi

13. Real-World Examples. 267
Deployment and Runtime Platforms 267
Cluster Sizing 268
Hadoop/Hive Migration Use Case 270
Other Data Sources 270
Users and Traffic 271
Conclusion 272

14. Conclusion. 273

Index. 275

xii | Table of Contents

Foreword

What a tremendous ride it has been so far! Looking back at the time when we started
the Presto project at Facebook in 2012, we certainly thought that we were going to
create something useful. We always planned to have a successful open source project
and community, and we released Presto in 2013 under the Apache License.

How far Presto has come since then, however, is beyond what we imagined. We are
proud of the project community’s accomplishments, but, more importantly, we are
very humbled by all the positive feedback and help we have received.

Presto has grown tremendously and provided a lot of value to its large community of
users. You can find fellow Presto community members across the globe, and develop‐
ers in Brazil, Canada, China, Germany, India, Israel, Japan, Poland, Singapore, the
United States, the United Kingdom, and other countries.

Launching the Presto Software Foundation in early 2019 was another major mile‐
stone. The not-for-profit organization is dedicated to the advancement of the Presto
open source distributed SQL engine. The foundation is committed to ensuring that
the project remains open, collaborative, and independent for decades to come.

Now, about one year after the launch of the foundation, we can look back at an accel‐
erated rate of impressive contributions from a larger community.

We are pleased that Matt, Manfred, and Martin created this book about Presto with
the help of O’Reilly. It provides a great introduction to Presto and teaches you every‐
thing you need to know to start using it successfully.

Enjoy the journey into the depths of Presto and the related world of business intelli‐
gence, reporting, dashboard creation, data warehousing, data mining, machine learn‐
ing, and beyond.

xiii

Of course, make sure to dive into the additional resources and help we offer on the
Presto website at https://prestosql.io, the community chat, the source repository, and
beyond.

Welcome to the Presto community!

— Dain Sundstrom and David Phillips
Creators of the Presto Projects and Founders of the

Presto Software Foundation

xiv | Foreword

https://prestosql.io

Preface

About the Book
Presto: The Definitive Guide is the first and foremost book about the Presto dis‐
tributed query engine. The book is aimed at beginners and existing users of Presto
alike. Ideally, you have some understanding of databases and SQL, but if not, you can
divert from reading and look things up while working your way through this book.
No matter your level of expertise, we are sure that you’ll learn something new from
this book.

The first part of the book introduces you to Presto and then helps you get up and
running quickly so you can start learning how to use it. This includes installation and
first use of the command-line interface as well as many client- and web-based appli‐
cations, such as SQL database management or dashboard and reporting tools, using
the JDBC driver.

The second part of the book advances your knowledge and includes details about the
Presto architecture, cluster deployment, many connectors to data sources, and a lot of
information about the main power of Presto—querying any data source with SQL.

The third part of the book rounds out the content with further aspects you need to
know when running and using a production Presto deployment. This includes Web
UI usage, security configuration, and some discussion of real-world uses of Presto in
other organizations.

xv

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Code Examples, Permissions, and Attribution
Supplemental material for the book is documented in greater detail in “Book Reposi‐
tory” on page 15.

If you have a technical question, or a problem using the code examples, please contact
us on the community chat—see “Community Chat” on page 13—or file issues on the
book repository.

xvi | Preface

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: "Presto: The Definitive
Guide by Matt Fuller, Manfred Moser, and Martin Traverso (O’Reilly). Copyright
2020 Matt Fuller, Martin Traverso, and Simpligility Technologies Inc.,
978-1-492-04427-7.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xvii

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/PrestoTDG.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

to learn more about our books, courses, and news, visit http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank everyone in the larger Presto community for using Presto,
spreading the word, helping other users, contributing to the project, and even com‐
mitting to the code or documentation. We are excited to be part of the community
and look forward to many shared successes in the future.

A critical part of the Presto community is Starburst. We want to thank everyone at
Starburst for their help and really appreciate the work, resources, stability, and sup‐
port Starburst provides to the project, its customers using Presto, and the authors,
who are part of the Starburst team.

Specifically related to the book, we would like to thank everyone who helped us with
idea, input, and reviews, including the following, probably incomplete list of people:

Anu Sundarsan, Dain Sundstrom, David Phillips, Grzegorz Kokosiński, Jeffrey Breen,
Jess Iandiorio, Justin Borgman, Kamil Bajda-Pawlikowski, Karol Sobczak, Kevin
Kline, Megan Sifferlen, Neeraj Soparawala, Piotr Findeisen, Raghav Sethi, Thomas
Nield, Tom Nats, Will Morrison, and Wojciech Biela.

In addition, the authors want to express their personal gratitude:

Matt would like to thank his wife, Meghan, and his three children, Emily, Hannah,
and Liam, for their patience and encouragement while Matt worked on the book. The
kids’ excitement about their dad becoming an “author” helped Matt through many
long weekends and late nights.

Manfred would like to thank his wife, Yen, and his three sons, Lukas, Nikolas, and
Tobias, not only for putting up with the tech-mumbo-jumbo but also for genuinely
sharing an interest and passion for technology, writing, learning, and teaching.

Martin would like to thank his wife, Melina, and his four children, Marcos, Victoria,
Joaquin, and Martina, for their support and enthusiasm over the past seven years of
working on Presto.

xviii | Preface

https://oreil.ly/PrestoTDG
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Getting Started with Presto

Presto is a SQL query engine enabling SQL access to any data source. You can use
Presto to query very large data sets by horizontally scaling the query processing.

In this first part, you learn about Presto and its use cases. Then you move on to get a
simple Presto installation up and running. And finally, you learn about the tools you
can use to connect to Presto and query the data. You get to concentrate on a minimal
setup so you can start using Presto successfully as quickly as possible.

CHAPTER 1

Introducing Presto

So you heard of Presto and found this book. Or maybe you are just browsing this first
section and wondering whether you should dive in. In this introductory chapter, we
discuss the problems you may be encountering with the massive growth of data cre‐
ation, and the value locked away within that data. Presto is a key enabler to working
with all the data and providing access to it with proven successful tools around Struc‐
tured Query Language (SQL).

The design and features of Presto enable you to get better insights, beyond those
accessible to you now. You can gain these insights faster, as well as get information
that you could not get in the past because it cost too much or took too long to obtain.
And for all that, you end up using fewer resources and therefore spending less of your
budget, which you can then use to learn even more!

We also point you to more resources beyond this book but, of course, we hope you
join us here first.

The Problems with Big Data
Everybody is capturing more and more data from device metrics, user behavior
tracking, business transactions, location data, software and system testing procedures
and workflows, and much more. The insights gained from understanding that data
and working with it can make or break the success of any initiative, or even a
company.

At the same time, the diversity of storage mechanisms available for data has exploded:
relational databases, NoSQL databases, document databases, key-value stores, object
storage systems, and so on. Many of them are necessary in today’s organizations, and
it is no longer possible to use just one of them. As you can see in Figure 1-1, dealing
with this can be a daunting task that feels overwhelming.

3

Figure 1-1. Big data can be overwhelming

In addition, all these different systems do not allow you to query and inspect the data
with standard tools. Different query languages and analysis tools for niche systems
are everywhere. Meanwhile, your business analysts are used to the industry standard,
SQL. A myriad of powerful tools rely on SQL for analytics, dashboard creation, rich
reporting, and other business intelligence work.

The data is distributed across various silos, and some of them can not even be queried
at the necessary performance for your analytics needs. Other systems, unlike modern
cloud applications, store data in monolithic systems that cannot scale horizontally.
Without these capabilities, you are narrowing the number of potential use cases and
users, and therefore the usefulness of the data.

The traditional approach of creating and maintaining large, dedicated data ware‐
houses has proven to be very expensive in organizations across the globe. Most often,
this approach is also found to be too slow and cumbersome for many users and usage
patterns.

You can see the tremendous opportunity for a system to unlock all this value.

Presto to the Rescue
Presto is capable of solving all these problems, and of unlocking new opportunities
with federated queries to disparate systems, parallel queries, horizontal cluster scal‐
ing, and much more. You can see the Presto project logo in Figure 1-2.

4 | Chapter 1: Introducing Presto

Figure 1-2. Presto logo

Presto is an open source, distributed SQL query engine. It was designed and written
from the ground up to efficiently query data against disparate data sources of all sizes,
ranging from gigabytes to petabytes. Presto breaks the false choice between having
fast analytics using an expensive commercial solution, or using a slow “free” solution
that requires excessive hardware.

Designed for Performance and Scale
Presto is a tool designed to efficiently query vast amounts of data by using distributed
execution. If you have terabytes or even petabytes of data to query, you are likely
using tools such as Apache Hive that interact with Hadoop and its Hadoop Dis‐
tributed File System (HDFS). Presto is designed as an alternative to these tools to
more efficiently query that data.

Analysts, who expect SQL response times from milliseconds for real-time analysis to
seconds and minutes, should use Presto. Presto supports SQL, commonly used in
data warehousing and analytics for analyzing data, aggregating large amounts of data,
and producing reports. These workloads are often classified as online analytical
processing (OLAP).

Even though Presto understands and can efficiently execute SQL, Presto is not a data‐
base, as it does not include its own data storage system. It is not meant to be a
general-purpose relational database that serves to replace Microsoft SQL Server, Ora‐
cle Database, MySQL, or PostgreSQL. Further, Presto is not designed to handle online
transaction processing (OLTP). This is also true of other databases designed and opti‐
mized for data warehousing or analytics, such as Teradata, Netezza, Vertica, and
Amazon Redshift.

Presto leverages both well-known and novel techniques for distributed query pro‐
cessing. These techniques include in-memory parallel processing, pipelined execu‐
tion across nodes in the cluster, a multithreaded execution model to keep all the CPU
cores busy, efficient flat-memory data structures to minimize Java garbage collection,
and Java bytecode generation. A detailed description of these complex Presto inter‐
nals is beyond the scope of this book. For Presto users, these techniques translate into
faster insights into your data at a fraction of the cost of other solutions.

Presto to the Rescue | 5

SQL-on-Anything
Presto was initially designed to query data from HDFS. And it can do that very effi‐
ciently, as you learn later. But that is not where it ends. On the contrary, Presto is a
query engine that can query data from object storage, relational database manage‐
ment systems (RDBMSs), NoSQL databases, and other systems, as shown in
Figure 1-3.

Presto queries data where it lives and does not require a migration of data to a single
location. So Presto allows you to query data in HDFS and other distributed object
storage systems. It allows you to query RDBMSs and other data sources. As such, it
can really query data wherever it lives and therefore be a replacement to the tradi‐
tional, expensive, and heavy extract, transform, and load (ETL) processes. Or at a
minimum, it can help you with them and lighten the load. So Presto is clearly not just
another SQL-on-Hadoop solution.

Figure 1-3. SQL support for a variety of data sources with Presto

Object storage systems include Amazon Web Services (AWS) Simple Storage Service
(S3), Microsoft Azure Blob Storage, Google Cloud Storage, and S3-compatible stor‐
age such as MinIO and Ceph. Presto can query traditional RDBMSs such as Micro‐
soft SQL Server, PostgreSQL, MySQL, Oracle, Teradata, and Amazon Redshift. Presto
can also query NoSQL systems such as Apache Cassandra, Apache Kafka, MongoDB,
or Elasticsearch. Presto can query virtually anything and is truly a SQL-on-Anything
system.

For users, this means that suddenly they no longer have to rely on specific query lan‐
guages or tools to interact with the data in those specific systems. They can simply
leverage Presto and their existing SQL skills and their well-understood analytics,
dashboarding, and reporting tools. These tools, built on top of using SQL, allow
analysis of those additional data sets, which are otherwise locked in separate systems.
Users can even use Presto to query across different systems with the SQL they know.

6 | Chapter 1: Introducing Presto

Separation of Data Storage and Query Compute Resources
Presto is not a database with storage; rather, it simply queries data where it lives.
When using Presto, storage and compute are decoupled and can be scaled independ‐
ently. Presto represents the compute layer, whereas the underlying data sources repre‐
sent the storage layer.

This allows Presto to scale up and down its compute resources for query processing,
based on analytics demand to access this data. There is no need to move your data,
and provision compute and storage to the exact needs of the current queries, or
change that regularly, based on your changing query needs.

Presto can scale the query power by scaling the compute cluster dynamically, and the
data can be queried right where it lives in the data source. This characteristic allows
you to greatly optimize your hardware resource needs and therefore reduce cost.

Presto Use Cases
The flexibility and powerful features of Presto allow you to decide for yourself how
exactly you are using Presto, and what benefits you value and want to take advantage
of. You can start with only one small use for a particular problem. Most Presto users
start like that.

Once you and other Presto users in your organization have gotten used to the bene‐
fits and features, you’ll discover new situations. Word spreads, and soon you see a
myriad of needs being satisfied by Presto accessing a variety of data sources.

In the following section, we discuss several of these use cases. Keep in mind that you
can expand your use to cover them all. On the other hand, it is also perfectly fine to
solve one particular problem with Presto. Just be prepared to like Presto and increase
its use after all.

One SQL Analytics Access Point
RDBMSs and the use of SQL have been around a long time and have proven to be
very useful. No organization runs without them. In fact, most companies run multi‐
ple systems. Large commercial databases like Oracle Database or IBM DB2 are proba‐
bly backing your enterprise software. Open source systems like MariaDB or
PostgreSQL may be used for other solutions and a couple of in-house applications.

As a consumer and analyst, you likely run into numerous problems:

• Sometimes you do not know where data is even available for you to use, and only
tribal knowledge in the company, or years of experience with internal setups, can
help you find the right data.

Presto Use Cases | 7

• Querying the various source databases requires you to use different connections,
as well as different queries running different SQL dialects. They are similar
enough to look the same, but they behave just differently enough to cause confu‐
sion and the need to learn the details.

• You cannot combine the data from different systems in a query without using the
data warehouse.

Presto allows you to get around these problems. You can expose all these databases in
one location: Presto.

You can use one SQL standard to query all systems—standardized SQL, functions,
and operators supported by Presto.

All your dashboarding and analytics tools, and other systems for your business intel‐
ligence needs, can point to one system, Presto, and have access to all data in your
organization.

Access Point to Data Warehouse and Source Systems
When organizations find the need to better understand and analyze data in their
numerous RDBMSs, the creation and maintenance of data warehouse systems comes
into play. Select data from various systems is then going through complex ETL pro‐
cesses and, often via long-running batch jobs, ends up in a tightly controlled, massive
data warehouse.

While this helps you a lot in many cases, as a data analyst, you now encounter new
problems:

• Now you have another entry point, in addition to all the databases themselves,
for your tools and queries.

• The data you specifically need today is not in the data warehouse. Getting the
data added is a painful, expensive process full of hurdles.

Presto allows you to add any data warehouse database as a data source, just like any
other relational database.

If you want to dive deeper into a data warehouse query, you can do it right there in
the same system. You can access the data warehouse and the source database system
in the same place and even write queries that combine them. Presto allows you to
query any database in the same system, data warehouse, source database, and any
other database.

8 | Chapter 1: Introducing Presto

Provide SQL-Based Access to Anything
The days of using only RDBMSs are long gone. Data is now stored in many disparate
systems optimized for relevant use cases. Object-based storage, key-value stores,
document databases, graph databases, event-streaming systems, and other so-called
NoSQL systems all provide unique features and advantages.

At least some of these systems are in use in your organization, holding data that’s cru‐
cial for understanding and improving your business.

Of course, all of these systems also require you to use different tools and technologies
to query and work with the data.

At a minimum, this is a complex task with a huge learning curve. More likely, how‐
ever, you end up only scratching the surface of your data and not really gaining a
complete understanding. You lack a good way to query the data. Tools to visualize
and analyze in more detail are hard to find or simply don’t exist.

Presto, on the other hand, allows you to connect to all these systems as a data source.
It exposes the data to query with standard American National Standards Institute
(ANSI) SQL and all the tooling using SQL, as shown in Figure 1-4.

Figure 1-4. One SQL access point for many use cases to all data sources

So with Presto, understanding the data in all these vastly different systems becomes
much simpler, or even possible, for the first time.

Presto Use Cases | 9

Federated Queries
Exposing all the data silos in Presto is a large step toward understanding your data.
You can use SQL and standard tools to query them all. However, often the questions
you want answered require you to reach into the data silos, pull aspects out of them,
and then combine them in a local manner.

Presto allows you to do that by using federated queries. A federated query is a SQL
query that references and uses different databases and schemas from entirely different
systems in the same statement. All the data sources in Presto are available for you to
query at the same time, with the same SQL in the same query.

You can define the relationships between the user-tracking information from your
object storage with the customer data in your RDBMS. If your key-value store con‐
tains more related information, you can hook it into your query as well.

Using federated queries with Presto allows you to gain insights that you could not
learn about otherwise.

Semantic Layer for a Virtual Data Warehouse
Data warehouse systems have created not only huge benefits for users but also a bur‐
den on organizations:

• Running and maintaining the data warehouse is a large, expensive project.
• Dedicated teams run and manage the data warehouse and the associated ETL

processes.
• Getting the data into the warehouse requires users to break through red tape and

typically takes too much time.

Presto, on the other hand, can be used as a virtual data warehouse. It can be used to
define your semantic layer by using one tool and standard ANSI SQL. Once all the
databases are configured as data sources in Presto, you can query them. Presto pro‐
vides the necessary compute power to query the storage in the databases. Using SQL
and the supported functions and operators, Presto can provide you the desired data
straight from the source. There is no need to copy, move, or transform the data before
you can use it for your analysis.

Thanks to the standard SQL support against all connected data sources, you can cre‐
ate the desired semantic layer for querying from tools and end users in a simpler
fashion. And that layer can encompass all underlying data sources without the need
to migrate any data. Presto can query the data at the source and storage level.

10 | Chapter 1: Introducing Presto

Using Presto as this “on-the-fly data warehouse” provides organizations the potential
to enhance their existing data warehouse with additional capabilities, or even to avoid
building and maintaining a warehouse altogether.

Data Lake Query Engine
The term data lake is often used for a large HDFS or similar distributed object storage
system into which all sorts of data is dumped without much thought about accessing
it. Presto unlocks this to become a useful data warehouse. In fact, Presto emerged
from Facebook as a way to tackle faster and more powerful querying of a very large
Hadoop data warehouse than what Hive and other tools could provide. This led to
the Presto Hive connector, discussed in “Hive Connector for Distributed Storage
Data Sources” on page 93.

Modern data lakes now often use other object storage systems beyond HDFS from
cloud providers or other open source projects. Presto is able to use the Hive connec‐
tor against any of them and hence enable SQL-based analytics on your data lake,
wherever it is located and however it stores the data.

SQL Conversions and ETL
With support for RDBMSs and other data storage systems alike, Presto can be used to
move data. SQL, and the rich set of SQL functions available, allow you to query data,
transform it, and then write it to the same data source or any other data source.

In practice, this means that you can copy data out of your object storage system or
key-value store and into a RDBMS, and use it for your analytics going forward. Of
course, you can also transform and aggregate the data to gain new understanding.

On the other hand, it is also common to take data from an operational RDBMS, or
maybe an event-streaming system like Kafka, and move it into a data lake to ease the
burden on the RDBMS in terms of querying by many analysts. ETL processes, now
often also called data preparation, can be an important part of this process to improve
the data and create a data model better suited for querying and analysis.

In this scenario, Presto is a critical part of an overall data management solution.

Better Insights Due to Faster Response Times
Asking complex questions and using massive data sets always runs into limitations. It
might end up being too expensive to copy the data and load it into your data ware‐
house and analyze it there. The computations require too much compute power to be
able to run them at all, or it takes numerous days to get an answer.

Presto avoids data copying by design. Parallel processing and heavy optimizations
regularly lead to performance improvements for your analysis with Presto.

Presto Use Cases | 11

If a query that used to take three days can now run in 15 minutes, it might be worth
running it after all. And the knowledge gained from the results gives you an advan‐
tage and the capacity to run yet more queries.

These faster processing times of Presto enable better analytics and results.

Big Data, Machine Learning, and Artificial Intelligence
The fact that Presto exposes more and more data to standard tooling around SQL,
and scales querying to massive data sets, makes it a prime tool for big data process‐
ing. Now this often includes statistical analysis and grows in complexity toward
machine learning and artificial intelligence systems. With the support for R and other
tools, Presto definitely has a role to play in these use cases.

Other Use Cases
In the prior sections, we provided a high-level overview of Presto use cases. New use
cases and combinations are emerging regularly.

In Chapter 13, you can learn details about the use of Presto by some well-known
companies and organizations. We present that information toward the end of the
book so you can first gain the knowledge required to understand the data at hand by
reading the following chapters.

Presto Resources
Beyond this book, many more resources are available that allow you to expand your
knowledge about Presto. In this section, we enumerate the important starting points.
Most of them contain a lot of information and include pointers to further resources.

Website
The Presto Software Foundation governs the community of the open source Presto
project and maintains the project website. You can see the home page in Figure 1-5.
The website contains documentation, contact details, community blog posts with the
latest news and events, and other information at https://prestosql.io.

12 | Chapter 1: Introducing Presto

https://prestosql.io

Figure 1-5. Home page of Presto website at prestosql.io

Documentation
The detailed documentation for Presto is maintained as part of the code base and is
available on the website. It includes high-level overviews as well as detailed reference
information about the SQL support, functions and operators, connectors, configura‐
tion, and much more. You also find release notes with details of latest changes there.
Get started at https://prestosql.io/docs.

Community Chat
The community of beginner, advanced, and expert users, as well as the contributors
and maintainers of Presto, is very supportive and actively collaborates every day on
the community chat available at https://prestosql.slack.com.

Join the general channel, and then check out the numerous channels focusing on vari‐
ous topics such as bug triage, releases, and development.

You can find Matt, Manfred, and Martin on the community chat
nearly every day, and we would love to hear from you there.

Presto Resources | 13

https://prestosql.io/docs
https://prestosql.slack.com

Source Code, License, and Version
Presto is an open source project distributed under the Apache License, v2 with the
source code managed and available in the Git repository at https://github.com/pres
tosql/presto.

The prestosql organization at https://github.com/prestosql contains numerous other
repositories related to the project, such as the source code of the website, clients,
other components, or the contributor license management repository.

Presto is an active open source project with frequent releases. By using the most
recent version, you are able to take advantage of the latest features, bug fixes, and per‐
formance improvements. This book refers to, and uses, the latest Presto version 330
at the time of writing. If you choose a different and more recent version of Presto, it
should work the same as described in this book. While it’s unlikely you’ll run into
issues, it is important to refer to the release notes and documentation for any
changes.

Contributing
As we’ve mentioned, Presto is a community-driven, open source project, and your
contributions are welcome and encouraged. The project is very active on the commu‐
nity chat, and committers and other developers are available to help there.

Here are a few tasks to get started with contributing:

• Check out the Developer Guide section of the documentation.
• Learn to build the project from source with instructions in the README file.
• Read the research papers linked on the Community page of the website.
• Read the Code of Conduct from the same page.
• Find an issue with the label good first issue.
• Sign the contributor license agreement (CLA).

The project continues to receive contributions with a wide range of complexity—
from small documentation improvements, to new connectors or other plug-ins, all
the way to improvements deep in the internals of Presto.

Of course, any work you do with and around Presto is welcome in the community.
This certainly includes seemingly unrelated work such as writing blog posts, present‐
ing at user group meetings or conferences, or writing and managing a plug-in on
your own, maybe to a database system you use.

Overall, we encourage you to work with the team and get involved. The project grows
and thrives with contributions from everyone. We are ready to help. You can do it!

14 | Chapter 1: Introducing Presto

https://github.com/prestosql/presto
https://github.com/prestosql/presto
https://github.com/prestosql

Book Repository
We provide resources related to this book—such as configuration file examples, SQL
queries, data sets and more—in a Git repository for your convenience.

Find it at https://github.com/prestosql/presto-the-definitive-guide, and download the
content as an archive file or clone the repository with git.

Feel free to create a pull request for any corrections, desired additions, or file issues if
you encounter any problems.

Iris Data Set
In later sections of this book, you are going to encounter example queries and use
cases that talk about iris flowers and the iris data set. The reason is a famous data set,
commonly used in data science classification examples, which is all about iris flowers.

The data set consists of one simple table of 150 records and columns with values for
sepal length, sepal width, petal length, petal width, and species.

The small size allows users to test and run queries easily and perform a wide range of
analyses. This makes the data set suitable for learning, including for use with Presto.
You can find out more about the data set on the Wikipedia page about it.

Our book repository contains the directory iris-data-set with the data in comma-
separated values (CSV) format, as well as a SQL file to create a table and insert it.
After reading Chapter 2 and “Presto Command-Line Interface” on page 25, the fol‐
lowing instructions are easy to follow.

You can use the data set by first copying the etc/catalog/memory.properties file into the
same location as your Presto installation and restarting Presto.

Now you can use the Presto CLI to get the data set into the iris table in the default
schema of the memory catalog:

$ presto -f iris-data-set/iris-data-set.sql
USE
CREATE TABLE
INSERT: 150 rows

Confirm that the data can be queried:

$ presto --execute 'SELECT * FROM memory.default.iris;'
"5.1","3.5","1.4","0.2","setosa"
"4.9","3.0","1.4","0.2","setosa"
"4.7","3.2","1.3","0.2","setosa"
...

Presto Resources | 15

https://github.com/prestosql/presto-the-definitive-guide
https://en.wikipedia.org/wiki/Iris_(plant)
https://en.wikipedia.org/wiki/Iris_flower_data_set

Alternatively, you can run the queries in any SQL management tool connected to
Presto; for example, with the Java Database Connectivity (JDBC) driver described in
“Presto JDBC Driver” on page 30.

Later sections include example queries to run with this data set in Chapter 8 and
Chapter 9, as well as information about the memory connector in “Memory Connec‐
tor” on page 107.

Flight Data Set
Similar to the iris data set, the flight data set is used later in this book for example
queries and usage. The data set is a bit more complex than the iris data set, consisting
of lookup tables for carriers, airports, and other information, as well as transactional
data about specific flights. This makes the data set suitable for more complex queries
using joins and for use in federated queries, where different tables are located in dif‐
ferent data sources.

The data is collected from the Federal Aviation Administration (FAA) and curated for
analysis. The flights table schema is fairly large, with a subset of the available col‐
umns shown in Table 1-1.

Table 1-1. Subset of available columns

flightdate airlineid origin dest arrtime deptime

Each row in the data set represents either a departure or an arrival of a flight at an
airport in the United States.

The book repository—see “Book Repository” on page 15—contains a separate folder,
flight-data-set. It contains instructions on how to import the data into different data‐
base systems, so that you can hook them up to Presto and run the example queries.

A Brief History of Presto
In 2008, Facebook open sourced Hive, later to become Apache Hive. Hive became
widely used within Facebook for running analytics against data in HDFS on its very
large Apache Hadoop cluster.

Data analysts at Facebook used Hive to run interactive queries on its large data ware‐
house. Before Presto existed at Facebook, all data analysis relied on Hive, which was
not suitable for interactive queries at Facebook’s scale. In 2012, its Hive data ware‐
house was 250 petabytes in size and needed to handle hundreds of users issuing tens
of thousands of queries each day. Hive started to hit its limit within Facebook and did
not provide the ability to query other data sources within Facebook.

16 | Chapter 1: Introducing Presto

Presto was designed from the ground up to run fast queries at Facebook scale. Rather
than create a new system to move the data to, Presto was designed to read the data
from where it is stored via its pluggable connector system. One of the first connectors
developed for Presto was the Hive connector; see “Hive Connector for Distributed
Storage Data Sources” on page 93. This connector queries data stored in a Hive data
warehouse directly.

In 2012, four Facebook engineers started Presto development to address the perfor‐
mance, scalability, and extensibility needs for analytics at Facebook. From the begin‐
ning, the intent was to build Presto as an open source project. At the beginning of
2013, the initial version of Presto was rolled out in production at Facebook. By the
fall of 2013, Presto was officially open sourced by Facebook. Seeing the success at
Facebook, other large web-scale companies started to adopt Presto, including Netflix,
LinkedIn, Treasure Data, and others. Many companies continued to follow.

In 2015, Teradata announced a large commitment of 20 engineers contributing to
Presto, focused on adding enterprise features such as security enhancements and eco‐
system tool integration. Later in 2015, Amazon added Presto to its AWS Elastic Map‐
Reduce (EMR) offering. In 2016, Amazon announced Athena, in which Presto serves
as a major foundational piece. And 2017 saw the creation of Starburst, a company
dedicated to driving the success of Presto everywhere.

At the end of 2018, the original creators of Presto left Facebook and founded the
Presto Software Foundation to ensure that the project remains collaborative and
independent. Since then, the innovation and growth of the project has accelerated
even more.

Today, the Presto community thrives and grows, and Presto continues to be used at
large scale by many well-known companies. The project is maintained by a flourish‐
ing community of developers and contributors from many companies across the
world, including Alibaba Group, Amazon, Appian, Gett, Google, Facebook, Hulu,
Line, LinkedIn, Lyft, Motorola, Qubole, Red Hat, Salesforce, Starburst, Twitter, Uber,
Varada, Walmart, and Zoho.

Conclusion
In this chapter, we introduced you to Presto. You learned more about some of its fea‐
tures, and we explored possible use cases together.

In Chapter 2, you get Presto up and running, connect a data source, and see how you
can query the data.

Conclusion | 17

CHAPTER 2

Installing and Configuring Presto

In Chapter 1, you learned about Presto and its possible use cases. Now you are ready
to try it out. In this chapter, you learn how to install Presto, configure a data source,
and query the data.

Trying Presto with the Docker Container
The Presto project provides a Docker container. It allows you to easily start up a con‐
figured demo environment of Presto for a first glimpse and exploration.

To run Presto in Docker, you must have Docker installed on your machine. You can
download Docker from the Docker website, or use the packaging system of your
operating systems.

Use docker to download the container image, save it with the name presto-trial,
and start it to run in the background:

docker run -d --name presto-trial prestosql/presto

Now let’s connect to the container and run the Presto command-line interface (CLI),
presto, on it. It connects to the Presto server running on the same container. In the
prompt, you then execute a query on a table of the tpch benchmark data:

$ docker exec -it presto-trial presto
presto> select count(*) from tpch.sf1.nation;
 _col0

 25
(1 row)

Query 20181105_001601_00002_e6r6y, FINISHED, 1 node
Splits: 21 total, 21 done (100.00%)
0:06 [25 rows, 0B] [4 rows/s, 0B/s]

19

https://www.docker.com

If you try to run Docker and see an error message resembling
Query 20181217_115041_00000_i6juj failed: Presto server

is still initializing, try waiting a bit and then retry your last
command.

You can continue to explore the data set with your SQL knowledge, and use the help
command to learn about the Presto CLI. More information about using the CLI can
be found in “Presto Command-Line Interface” on page 25.

Once you are done with your exploration, just type the command quit.

To stop and remove the container, simply execute the following:

$ docker stop presto-trial
presto-trial
$ docker rm presto-trial
presto-trial

Now you can run it again if you want to experiment further. If you have learned
enough and do not need the Docker images anymore, you can delete all related
Docker resources:

$ docker rmi prestosql/presto
Untagged: prestosql/presto:latest
...
Deleted: sha256:877b494a9f...

Installing from Archive File
After trying Presto with Docker, or even as a first step, you can install Presto on your
local workstation or a server of your choice.

Presto works on most modern Linux distributions and macOS. It requires a Java Vir‐
tual Machine (JVM) and a Python installation.

Java Virtual Machine
Presto is written in Java and requires a JVM to be installed on your system. Presto
requires the long-term support version Java 11. Presto does not support older ver‐
sions of Java. Newer releases might work, but Presto is not well tested on these.

Confirm that java is installed and available on the PATH:

$ java --version
openjdk 11.0.4 2019-07-16
OpenJDK Runtime Environment (build 11.0.4+11)
OpenJDK 64-Bit Server VM (build 11.0.4+11, mixed mode, sharing)

If you do not have Java 11 installed, Presto fails to start.

20 | Chapter 2: Installing and Configuring Presto

Python
Python version 2.6 or higher is required by the launcher script included with Presto.

Confirm that python is installed and available on the PATH:

$ python --version
Python 2.7.15+

Installation
The Presto release binaries are distributed on the Maven Central Repository. The
server is available as a tar.gz archive file.

You can see the list of available versions at https://repo.maven.apache.org/maven2/io/
prestosql/presto-server.

Determine the largest number, which represents the latest release, and navigate into
the folder and download the tar.gz file. You can also download the archive on the
command line; for example, with wget for version 330:

$ wget https://repo.maven.apache.org/maven2/\
 io/prestosql/presto-server/330/presto-server-330.tar.gz

As a next step, extract the archive:

$ tar xvzf presto-server-*.tar.gz

The extraction creates a single top-level directory, named identical to the base file‐
name without an extension. This directory is referred to as the installation directory.

The installation directory contains these directories:

lib
Contains the Java archives (JARs) that make up the Presto server and all required
dependencies.

plugins
Contains the Presto plug-ins and their dependencies, in separate directories for
each plug-in. Presto includes many plug-ins by default, and third-party plug-ins
can be added as well. Presto allows for pluggable components to integrate with
Presto, such as connectors, functions, and security access controls.

bin
Contains launch scripts for Presto. These scripts are used to start, stop, restart,
kill, and get the status of a running Presto process. Learn more about the use of
these scripts in “Launcher” on page 77.

Installing from Archive File | 21

https://repo.maven.apache.org/maven2/io/prestosql/presto-server
https://repo.maven.apache.org/maven2/io/prestosql/presto-server

etc
This is the configuration directory. It is created by the user and provides the nec‐
essary configuration files needed by Presto. You can find out more about the con‐
figuration in “Configuration Details” on page 73.

var
Finally, this is a data directory, the place where logs are stored. It is created the
first time the Presto server is launched. By default, it is located in the installation
directory. We recommend configuring it outside the installation directory to
allow for the data to be preserved across upgrades.

Configuration
Before you can start Presto, you need to provide a set of configuration files:

• Presto logging configuration
• Presto node configuration
• JVM configuration

By default, the configuration files are expected in the etc directory inside the installa‐
tion directory.

With the exception of the JVM configuration, the configurations follow the Java
properties standards. As a general description for Java properties, each configuration
parameter is stored as a pair of strings in the format key=value per line.

Inside the Presto installation directory you created in the previous section, you need
to create the basic set of Presto configuration files. You can find ready-to-go configu‐
ration files in the Git repository for the book detailed in “Book Repository” on page
15. Here is the content of the three configuration files:

etc/config.properties:
coordinator=true
node-scheduler.include-coordinator=true
http-server.http.port=8080
query.max-memory=5GB
query.max-memory-per-node=1GB
query.max-total-memory-per-node=2GB
discovery-server.enabled=true
discovery.uri=http://localhost:8080

etc/node.properties:
node.environment=demo

22 | Chapter 2: Installing and Configuring Presto

etc/jvm.config:

-server
-Xmx4G
-XX:+UseG1GC
-XX:G1HeapRegionSize=32M
-XX:+UseGCOverheadLimit
-XX:+ExplicitGCInvokesConcurrent
-XX:+HeapDumpOnOutOfMemoryError
-XX:+ExitOnOutOfMemoryError
-Djdk.nio.maxCachedBufferSize=2000000
-Djdk.attach.allowAttachSelf=true

With the preceding configuration files in place, Presto is ready to be started. You can
find a more detailed description of these files in Chapter 5.

Adding a Data Source
Although our Presto installation is ready, you are not going to start it just yet. After
all, you want to be able to query some sort of external data in Presto. That requires
you to add a data source configured as a catalog.

Presto catalogs define the data sources available to users. The data access is performed
by a Presto connector configured in the catalog with the connector.name property.
Catalogs expose all the schemas and tables inside the data source to Presto.

For example, the Hive connector maps each Hive database to a schema. If a Hive
database web contains a table clicks and the catalog is named sitehive, the Hive
connector exposes that table. The Hive connector has to be specified in the catalog
file. You can access the catalog with the fully qualified name syntax cata

log.schema.table; so in this example, sitehive.web.clicks.

Catalogs are registered by creating a catalog properties file in the etc/catalog directory.
The name of the file sets the name of the catalog. For example, let’s say you create
catalog properties files etc/cdh-hadoop.properties, etc/sales.properties, etc/web-
traffic.properties, and etc/mysql-dev.properties. Then the catalogs exposed in Presto are
cdh-hadoop, sales, web-traffic, and mysql-dev.

You can use the TPC-H connector for your first exploration of a Presto example. The
TPC-H connector is built into Presto and provides a set of schemas to support the
TPC Benchmark H (TPC-H). You can learn more about it in “Presto TPC-H and
TPC-DS Connectors” on page 92.

To configure the TPC-H connector, create a catalog properties file, etc/catalog/
tpch.properties with the tpch connector configured:

connector.name=tpch

Adding a Data Source | 23

Every catalog file requires the connector.name property. Additional properties are
determined by the Presto connector implementations. These are documented in the
Presto documentation, and you can start to learn more in Chapter 6 and Chapter 7.

Our book repository contains a collection of other catalog files that can be very useful
for your learning with Presto.

Running Presto
Now you are truly ready to go, and we can proceed to start Presto. The installation
directory contains the launcher scripts. You can use them to start Presto:

$ bin/launcher run

The run command starts Presto as a foreground process. Logs and other output of
Presto are written to stdout and stderr. A successful start is logged, and you should
see the following line after a while:

INFO main io.prestosql.server.PrestoServer ======== SERVER STARTED

Running Presto in the foreground can be useful for first testing and quickly verifying
whether the process starts up correctly and that it is using the expected configuration
settings. You can stop the server with Ctrl-C.

You can learn more about the launcher script in “Launcher” on page 77, and about
logging in “Logging” on page 75.

Conclusion
Now you know how simple it is to get Presto installed and configured. It is up and
running and ready to be used.

In Chapter 3, you learn how to interact with Presto and use it to query the data sour‐
ces with the configured catalogs. You can also jump ahead to Chapter 6 and Chapter 7
to learn more about other connectors and include the additional catalogs in your next
steps.

24 | Chapter 2: Installing and Configuring Presto

CHAPTER 3

Using Presto

Congratulations! In the prior chapters, you were introduced to Presto and learned
how to get it installed, configured, and started. Now you get to use it.

Presto Command-Line Interface
The Presto command-line interface (CLI) provides a terminal-based, interactive shell
for running queries and for interacting with the Presto server to inspect metadata
about it.

Getting Started
Just like the Presto server itself, the Presto CLI release binaries are distributed on the
Maven Central Repository. The CLI application is available as an executable JAR file,
which allows you to use it like a normal Unix executable.

You can see the list of available versions at https://repo.maven.apache.org/maven2/io/
prestosql/presto-cli.

Locate the version of the CLI that is identical to the Presto server version you are run‐
ning. Download the *-executable.jar file from the versioned directory, and rename it
to presto; for example, with wget and version 330:

$ wget -O presto \
https://repo.maven.apache.org/maven2/\
io/prestosql/presto-cli/330/presto-cli-330-executable.jar

25

https://repo.maven.apache.org/maven2/io/prestosql/presto-cli
https://repo.maven.apache.org/maven2/io/prestosql/presto-cli

Ensure that the file is set to be executable. For convenience, make it available on the
PATH; for example, by copying it to ~/bin and adding that folder to the PATH:

$ chmod +x presto
$ mv presto ~/bin
$ export PATH=~/bin/:$PATH

You can now run the Presto CLI and confirm the version:

$ presto --version
Presto CLI 330

Documentation for all available options and commands is available with the help
option:

$ presto --help

Before you start using the CLI, you need to determine which Presto server you want
to interact with. By default, the CLI connects to the Presto server running on http://
localhost:8080. If your server is running locally for testing or development, or you
access the server with SSH, or you’re using the Docker container with exec and the
CLI is installed there, you are ready to go:

$ presto
presto>

If Presto is running at a different server, you have to specify the URL:

$ presto --server https://presto.example.com:8080
presto>

The presto> prompt shows that you are using the interactive console accessing the
Presto server. Type help to get a list of available commands:

presto> help
Supported commands:
QUIT
EXPLAIN [(option [, ...])] <query>
 options: FORMAT { TEXT | GRAPHVIZ | JSON }
 TYPE { LOGICAL | DISTRIBUTED | VALIDATE | IO }
DESCRIBE <table>
SHOW COLUMNS FROM <table>
SHOW FUNCTIONS
SHOW CATALOGS [LIKE <pattern>]
SHOW SCHEMAS [FROM <catalog>] [LIKE <pattern>]
SHOW TABLES [FROM <schema>] [LIKE <pattern>]
USE [<catalog>.]<schema>

Most commands, and especially all SQL statements, in the CLI need to end with a
semicolon. You can find much more information about SQL on Presto in “SQL with
Presto” on page 36. For now, you can just explore a few simple things to get started.

26 | Chapter 3: Using Presto

http://localhost:8080
http://localhost:8080

First, you can check what data sources are configured as catalogs. At a minimum, you
find the internal metadata catalog—system. In our case, you also find the tpch
catalog:

presto> SHOW CATALOGS;
 Catalog

 system
 tpch
(2 rows)

Query 20191212_185850_00001_etmtk, FINISHED, 1 node
Splits: 19 total, 19 done (100.00%)
0:01 [0 rows, 0B] [0 rows/s, 0B/s]

You can easily display available schemas as well as tables in the schemas. Each time
you query Presto, query processing statistics are returned, together with the result.
You see them just as in the preceding code. We are going to omit them in the follow‐
ing listings:

presto> SHOW SCHEMAS FROM tpch;
 Schema

 information_schema
 sf1
 sf100
 sf1000
 sf10000
 sf100000
 sf300
 sf3000
 sf30000
 tiny
(10 rows)

presto> SHOW TABLES FROM tpch.sf1;
 Table

 customer
 lineitem
 nation
 orders
 part
 partsupp
 region
 supplier
(8 rows)

Presto Command-Line Interface | 27

Now you are ready to query some actual data:

presto> SELECT count(name) FROM tpch.sf1.nation;
 _col0

 25
(1 row)

Alternatively, you can select a schema to work with, and then omit the qualifier from
the query:

presto> USE tpch.sf1;
USE
presto:sf1> SELECT count(name) FROM nation:

If you know that you are going to work with a specific schema, before you start the
CLI, you can specify it at startup:

$ presto --catalog tpch --schema sf1

Now you are ready to exercise all your SQL knowledge and the power of Presto to
query the configured data sources.

To exit out of the CLI, you can simply type quit or exit, or press Ctrl-D.

Pagination
By default, the results of queries are paginated using the less program, which is con‐
figured with a carefully selected set of options. This behavior can be overridden by
setting the environment variable PRESTO_PAGER to the name of a different program
such as more, or set it to an empty value to completely disable pagination.

History
The Presto CLI keeps a history of the previously used commands. You can use the up
and down arrows to scroll through the history as well as Ctrl-S and Ctrl-R to search
through the history. If you want to execute a query again, press Enter to execute the
query.

By default, the Presto history file is located in ~/.presto_history. You can change the
default with the PRESTO_HISTORY_FILE environment variable.

Additional Diagnostics
The Presto CLI provides the --debug option to enable debug information when run‐
ning queries:

$ presto --debug

presto:sf1> SELECT count(*) FROM foo;

28 | Chapter 3: Using Presto

Query 20181103_201856_00022_te3wy failed:
 line 1:22: Table tpch.sf1.foo does not exist
io.prestosql.sql.analyzer.SemanticException:
 line 1:22: Table tpch.sf1.foo does not exist
...
at java.lang.Thread.run(Thread.java:748)

Executing Queries
It is possible to execute a query directly with the presto command and have the
Presto CLI exit after query completion. This is often desirable if you are scripting
execution of multiple queries or are automating a more complex workflow with
another system. The execution returns the query results from Presto.

To run a query with the Presto CLI, use the --execute option. It is also important to
fully qualify the table (for example, catalog.schema.table):

$ presto --execute 'SELECT nationkey, name, regionkey FROM tpch.sf1.nation LIMIT 5'
"0","ALGERIA","0"
"1","ARGENTINA","1"
"2","BRAZIL","1"
"3","CANADA","1"
"4","EGYPT","4"

Alternatively, use the --catalog and --schema options:

$ presto --catalog tpch --schema sf1 \
 --execute 'select nationkey, name, regionkey from nation limit 5'

You can execute multiple queries by separating the queries with a semicolon.

The Presto CLI also supports executing commands and SQL queries in a file, like
nations.sql:

USE tpch.sf1;
SELECT name FROM nation;

When you use the CLI with the -f option, it returns the data on the command line
and then exits:

$ presto -f nations.sql
USE
"ALGERIA"
"ARGENTINA"
"BRAZIL"
"CANADA"
...

Presto Command-Line Interface | 29

Output Formats
The Presto CLI provides the option --output-format to control how the output is
displayed when running in noninteractive mode. The available options are ALIGNED,
VERTICAL, CSV, TSV, CSV_HEADER, TSV_HEADER, and NULL. The default value is CSV.

Ignoring Errors
The Presto CLI provides the option --ignore-error, if you want to skip any errors
that are encountered while executing the queries in a file. The default behavior is to
stop execution of the script upon encountering the first error.

Presto JDBC Driver
Presto can be accessed from any Java application using a Java Database Connectivity
(JDBC) driver. JDBC is a standard API that provides the necessary methods such as
querying, inserting, deleting, and updating data in a relational database. Many client
and server-side applications running on the JVM implement features for database
management, reporting, and other aspects and are using JDBC to access the underly‐
ing database. All of these applications can use Presto with the JDBC driver.

The Presto JDBC driver allows you to connect to Presto and interact with Presto via SQL
statements.

If you’re familiar with the different implementations of JDBC driv‐
ers, the Presto JDBC driver is a Type 4 driver. This simply means it
talks to the Presto native protocol.

Using the JDBC driver enables you to use powerful SQL client and database adminis‐
tration tools, such as the open source tools DBeaver or SQuirreL SQL Client and
many others. Report generation, dashboard, and analytics tools using JDBC can also
be used with Presto.

The steps to use any of these tools with Presto are similar:

1. Download the JDBC driver.
2. Make the JDBC driver available on the classpath of the application.
3. Configure the JDBC driver.
4. Configure the connection to Presto.
5. Connect to Presto and use it.

30 | Chapter 3: Using Presto

https://dbeaver.io
http://www.squirrelsql.org

For example, the open source database management tool DBeaver makes this process
simple. After installing and starting DBeaver, follow these simple steps:

1. From the File menu, select New.
2. From the DBeaver section, select Database Connection and then click Next.
3. Type prestosql in the input field, select the icon, and click Next.
4. Configure the connection to Presto and click Finish. Note that a username value

is required. You can provide a random name on a default installation of Presto
without authentication.

Now you see the connection in the Database Navigator on the left and can inspect the
schemas and tables, with an example displayed in Figure 3-1. You can also start the
SQL Editor and start writing your queries and working with Presto.

Figure 3-1. DBeaver user interface displaying tpch.sf1.customer table columns

SQuirreL SQL Client and many other tools use a similar process. Some steps, such as
downloading the JDBC driver, and configuring the database driver and connection,
are more manual. Let’s look at the details.

Presto JDBC Driver | 31

http://www.squirrelsql.org

Downloading and Registering the Driver
The Presto JDBC driver is distributed on the Maven Central Repository. The server is
available as a JAR file.

You can see the list of available versions at https://repo.maven.apache.org/maven2/io/
prestosql/presto-jdbc.

Determine the largest number, which represents the latest release, and navigate into
the folder and download the .jar file. You can also download the archive on the com‐
mand line; for example, with wget for version 330:

$ wget https://repo.maven.apache.org/maven2/\
io/prestosql/presto-jdbc/330/presto-jdbc-330.jar

To use the Presto JDBC driver in your application, you add it to the classpath of the
Java application. This differs for each application but often uses a folder named lib, as
is the case for SQuirreL SQL Client. Some applications include a dialog to add
libraries to the classpath, which can be used alternatively to copying the file into place
manually.

Loading of the driver typically requires a restart of the application.

Now you are ready to register the driver. In SQuirreL SQL Client, you can do that
with the + button to create a new driver in the Drivers tab on the left of the user
interface.

When configuring the driver, you need to ensure that you configure the following
parameters:

• Class name: io.prestosql.jdbc.PrestoDriver
• Example JDBC URL: jdbc:presto://host:port/catalog/schema
• Name: Presto
• Website: https://prestosql.io

Only the class name, JDBC URL, and the JAR on the classpath are truly required for
the driver to operate. Other parameters are optional and depend on the application.

Establishing a Connection to Presto
With the driver registered and Presto up and running, you can now connect to it
from your application.

In SQuirreL SQL Client, this connection configuration is called an alias. You can use
the Alias tab on the left of the user interface and the + button to create a new alias
with the following parameters:

32 | Chapter 3: Using Presto

https://repo.maven.apache.org/maven2/io/prestosql/presto-jdbc
https://repo.maven.apache.org/maven2/io/prestosql/presto-jdbc

Name
A descriptive name for the Presto connection. The name is more important if
you end up connecting to multiple Presto instances, or different schemas and
databases.

Driver
Select the Presto driver you created earlier.

URL
The JDBC URL uses the pattern jdbc:presto://host:port/catalog/schema, with cata‐
log and schema values optional. You can connect to Presto, installed earlier on
your machine and running on http://localhost:8080, with the JDBC URL
jdbc:presto://localhost:8080. The host parameter is the host where the Presto coor‐
dinator is running. It is the same hostname you use when connecting via the
Presto CLI. This can be in the form of an IP address or DNS hostname. The port
parameter is the HTTP port to connect to Presto on the host. The optional cata‐
log and schema parameters are used to establish a connection by using the
catalog and schema specified. When you specify these, you do not have to fully
qualify the table names in the queries.

Username
A username value is required, even when no authentication is configured on
Presto. This allows Presto to report the initiator for any queries.

Password
The password is associated with the user and used for authentication. No pass‐
word is required for a default installation of Presto without configured
authentication.

The JDBC driver can receive further parameters as properties. The mechanism for
providing these values depends on the application. Both DBeaver and SQuirreL SQL
Client include a user interface to specify properties as part of the connection
configuration:

SSL

Enable SSL usage of the connection, true or false.

SSLTrustStorePath

Path to the SSL truststore.

SSLTrustStorePassword

Password for the SSL truststore.

user and password
Equivalent to the username and password parameters.

Presto JDBC Driver | 33

http://localhost:8080

applicationNamePrefix

Property used to identify the application to Presto. This is used to set the source
name for the Presto query. This name is displayed in the Presto Web UI so that
administrators can see where the query originated. Furthermore, it can be used
in conjunction with resource groups in which you can use the ApplicationName
to decide how to assign resources in Presto. This is discussed in “Resource
Groups” on page 262.

The full list of available parameters for the JDBC drivers can be found in the Presto
documentation; see “Documentation” on page 13.

Once you have configured the connection, you can use it to connect to Presto. This
enables you to query Presto itself and all configured schemas and databases. The spe‐
cific features available for query execution or report generation or any other func‐
tionality depend on the application connected to Presto. Figure 3-2 shows a
successful connection to Presto in SQuirreL SQL Client with some example queries
and a result set.

Figure 3-2. SQuirreL SQL Client user interface displaying queries and result set

34 | Chapter 3: Using Presto

Presto and ODBC
Similar to the connection to Presto with the JDBC driver—“Presto JDBC Driver” on
page 30—Open Database Connectivity (ODBC) allows any application supporting
ODBC to use Presto. It provides an API for typically C-based applications.

Currently, no open source ODBC driver for Presto is available. However, commercial
drivers can be purchased from Starburst and Simba.

This enables several popular applications from the database administration, business
intelligence, and reporting and analytics space, such as Microsoft Power BI, Tableau,
SAS, Quest Toad, and others. ODBC also enables Microsoft Excel usage.

Client Libraries
Besides the Presto CLI and the JDBC driver, maintained by the Presto team directly,
numerous members of the larger Presto community have created client libraries for
Presto.

You can find libraries for Python, C, Go, Node.js, R, Ruby, and others. A list is main‐
tained on the Presto website discussed in “Website” on page 12.

These libraries can be used to integrate Presto with applications in these language
ecosystems, including your own applications.

Presto Web UI
Every Presto server provides a web interface, commonly referred to as the Presto Web
UI. The Presto Web UI, shown in Figure 3-3, exposes details about the Presto server
and query processing on the server.

The Presto Web UI is accessible at the same address as the Presto server, using the
same HTTP port number. By default, this port is 8080; for example, http://
presto.example.com:8080. So on your local installation, you can check out the Web
UI at http://localhost:8080.

The main dashboard shows details about the Presto utilization and a list of queries.
Further details are available in the UI. All this information is of great value for operat‐
ing Presto and managing the running queries.

Using the Web UI is very useful for monitoring Presto and tuning performance, as
explained in more detail in “Monitoring with the Presto Web UI” on page 239. As a
beginner user, it is mostly useful to confirm that the server is up and running and is
processing your queries.

Presto and ODBC | 35

https://www.starburstdata.com
https://www.simba.com

Figure 3-3. Presto Web UI display of high-level information about the cluster

SQL with Presto
Presto is an ANSI SQL-compliant query engine. It allows you to query and manipu‐
late data in any connected data source with the same SQL statements, functions, and
operators.

Presto strives to be compliant with existing SQL standards. One of the main design
principles of Presto is to neither invent another SQL-like query language nor deviate
too much from the SQL standard. Every new functionality and language feature
attempts to comply with the standard.

Extending the SQL feature set is considered only when the standard does not define
an equivalent functionality. And even then, great care is taken to design the feature by
considering similar features in the standard and other existing SQL implementations
as a sign of what can become standard in the future.

In rare cases, when the standard does not define an equivalent
functionality, Presto extends the standard. A prominent example
are Lambda expressions; see “Lambda Expressions” on page 192.

36 | Chapter 3: Using Presto

Presto does not define any particular SQL standard version it complies with. Instead,
the standard is treated as a living document, and the newest standard version is
always considered important. On the other hand, Presto does not yet implement all
the mandatory features defined in the SQL standard. As a rule, if an existing func‐
tionality is found as noncompliant, it is deprecated and later replaced with a standard
compliant one.

Querying Presto can be done with the Presto CLI as well as any database manage‐
ment tool connected with JDBC or ODBC, as discussed earlier.

Concepts
Presto enables SQL-based access to external data sources such as relational databases,
key-value stores, and object storage. The following concepts are important to under‐
stand in Presto:

Connector
Adapts Presto to a data source. Every catalog is associated with a specific
connector.

Catalog
Defines details for accessing a data source; contains schemas and configures a
specific connector to use.

Schema
A way to organize tables. A catalog and schema together define a set of tables that
can be queried.

Table
A set of unordered rows, which are organized into named columns with data
types.

First Examples
This section presents a short overview of supported SQL and Presto statements, with
much more detail available in Chapter 8 and Chapter 9.

Presto metadata is contained in the system catalog. Specific statements can be used to
query that data and, in general, find out more about the available catalogs, schemas,
information schemas, tables, functions, and more.

SQL with Presto | 37

Use the following to list all catalogs:

SHOW CATALOGS;
 Catalog

 system
 tpch
 (2 rows)

Show all schemas in the tpch catalog as follows:

SHOW SCHEMAS FROM tpch;
 Schema

 information_schema
 sf1
 sf100
 sf1000
 sf10000
 sf100000
 sf300
 sf3000
 sf30000
 tiny
(10 rows)

Here’s how to list the tables in the sf1 catalog:

SHOW TABLES FROM tpch.sf1;
 Table

 customer
 lineitem
 nation
 orders
 part
 partsupp
 region
 supplier
(8 rows)

Find out about the data in the region table as follows:

DESCRIBE tpch.sf1.region;
 Column | Type | Extra | Comment
-----------+--------------+-------+---------
 regionkey | bigint | |
 name | varchar(25) | |
 comment | varchar(152) | |
(3 rows)

38 | Chapter 3: Using Presto

Other useful statements, such as USE and SHOW FUNCTIONS, are available. More infor‐
mation about the system catalog and Presto statements is available in “Presto State‐
ments” on page 132.

With the knowledge of the available catalogs, schemas, and tables, you can use stan‐
dard SQL to query the data.

You can check what regions are available:

SELECT name FROM tpch.sf1.region;
 name

 AFRICA
 AMERICA
 ASIA
 EUROPE
 MIDDLE EAST
(5 rows)

You can return a subset and order the list:

 SELECT name
 FROM tpch.sf1.region
 WHERE name like 'A%'
 ORDER BY name DESC;
 name

 ASIA
 AMERICA
 AFRICA
(3 rows)

Joining multiple tables and other parts of the SQL standard are supported as well:

SELECT nation.name AS nation, region.name AS region
FROM tpch.sf1.region, tpch.sf1.nation
WHERE region.regionkey = nation.regionkey
AND region.name LIKE 'AFRICA';
 nation | region
------------+--------
 MOZAMBIQUE | AFRICA
 MOROCCO | AFRICA
 KENYA | AFRICA
 ETHIOPIA | AFRICA
 ALGERIA | AFRICA
(5 rows)

Presto supports operators like || for string concatenation. You can also use mathe‐
matical operators such as + and -.

SQL with Presto | 39

You can change the preceding query to use JOIN and concatenate the result string to
one field:

SELECT nation.name || ' / ' || region.name AS Location
FROM tpch.sf1.region JOIN tpch.sf1.nation
ON region.regionkey = nation.regionkey
AND region.name LIKE 'AFRICA';
 Location

 MOZAMBIQUE / AFRICA
 MOROCCO / AFRICA
 KENYA / AFRICA
 ETHIOPIA / AFRICA
 ALGERIA / AFRICA
(5 rows)

In addition to the operators, Presto supports a large variety of functions. They range
from simple use cases to very complex functionality. You can display a list in Presto
by using SHOW FUNCTIONS.

A simple example is to calculate the average prices of all orders and display the
rounded integer value:

SELECT round(avg(totalprice)) AS average_price
FROM tpch.sf1.orders;
 average_price

 151220.0
(1 row)

More details about SQL usage are available in the Presto documentation and in Chap‐
ter 8. Information about functions and operators is also available on the website, and
you can find a good overview with more examples in Chapter 9.

Conclusion
Presto is up and running. You connected a data source and used SQL to query it. You
can use the Presto CLI, or applications connected to Presto with JDBC.

With this powerful combination in place, you are ready to dive deeper. In the next
chapters, we are going to do exactly that: learn how to install Presto for a larger pro‐
duction deployment, understand the architecture of Presto, and get into the details
about SQL usage.

40 | Chapter 3: Using Presto

PART II

Diving Deeper into Presto

After learning about Presto and various use cases, installing it, and starting to use it,
you are now ready to dive deeper and find out more.

In this second part of the book, you learn about the internal workings of Presto in
preparation of installing it for production-ready usage, running it, tuning the setup,
and more.

We discuss more details about connecting data sources and then querying them with
the Presto support for SQL statements, operators, functions, and more.

CHAPTER 4

Presto Architecture

After the introduction to Presto, and an initial installation and usage in the earlier
chapters, we now discuss the Presto architecture. We dive deeper into related con‐
cepts, so you can learn about the Presto query execution model, query planning, and
cost-based optimizations.

In this chapter, we first discuss the Presto high-level architectural components. It is
important to have a general understanding of the way Presto works, especially if you
intend to install and manage a Presto cluster yourself, as discussed in Chapter 5.

In the later part of the chapter, we dive deeper into those components when we talk
about the query execution model of Presto. This is most important if you need to
diagnose or tune a slow performance query, all discussed in Chapter 8, or if you plan
to contribute to the Presto open source project.

Coordinator and Workers in a Cluster
When you first installed Presto, as discussed in Chapter 2, you used only a single
machine to run everything. For the desired scalability and performance, this deploy‐
ment is not suitable.

Presto is a distributed SQL query engine resembling massively parallel processing
(MPP) style databases and query engines. Rather than relying on vertical scaling of
the server running Presto, it is able to distribute all processing across a cluster of
servers in a horizontal fashion. This means that you can add more nodes to gain
more processing power.

Leveraging this architecture, the Presto query engine is able to process SQL queries
on large amounts of data in parallel across a cluster of computers, or nodes. Presto

43

runs as a single-server process on each node. Multiple nodes running Presto, which
are configured to collaborate with each other, make up a Presto cluster.

Figure 4-1 displays a high-level overview of a Presto cluster composed of one coordi‐
nator and multiple worker nodes. A Presto user connects to the coordinator with a
client, such as a tool using the JDBC driver or the Presto CLI. The coordinator then
collaborates with the workers, which access the data sources.

Figure 4-1. Presto architecture overview with coordinator and workers

A coordinator is a Presto server that handles incoming queries and manages the work‐
ers to execute the queries.

A worker is a Presto server responsible for executing tasks and processing data.

The discovery service typically runs on the coordinator and allows workers to register
to participate in the cluster.

All communication and data transfer between clients, coordinator, and workers uses
REST-based interactions over HTTP/HTTPS.

Figure 4-2 shows how the communication within the cluster happens between the
coordinator and the workers, as well as from one worker to another. The coordinator
talks to workers to assign work, update status, and fetch the top-level result set to
return to the users. The workers talk to each other to fetch data from upstream tasks,
running on other workers. And the workers retrieve result sets from the data source.

44 | Chapter 4: Presto Architecture

Figure 4-2. Communication between coordinator and workers in a Presto cluster

Coordinator
The Presto coordinator is the server responsible for receiving SQL statements from
the users, parsing these statements, planning queries, and managing worker nodes.
It’s the brain of a Presto installation and the node to which a client connects. Users
interact with the coordinator via the Presto CLI, applications using the JDBC or
ODBC drivers, or any other available client libraries for a variety of languages. The
coordinator accepts SQL statements from the client such as SELECT queries for
execution.

Every Presto installation must have a coordinator alongside one or more workers. For
development or testing purposes, a single instance of Presto can be configured to per‐
form both roles.

The coordinator keeps track of the activity on each worker and coordinates the exe‐
cution of a query. The coordinator creates a logical model of a query involving a ser‐
ies of stages.

Figure 4-3 displays the communication between client, coordinator, and workers.

Once it receives a SQL statement, the coordinator is responsible for parsing, analyz‐
ing, planning, and scheduling the query execution across the Presto worker nodes.
The statement is translated into a series of connected tasks running on a cluster of
workers. As the workers process the data, the results are retrieved by the coordinator
and exposed to the clients on an output buffer. Once an output buffer is completely
read by the client, the coordinator requests more data from the workers on behalf of
the client. The workers, in turn, interact with the data sources to get the data from
them. As a result, data is continuously requested by the client and supplied by the
workers from the data source until the query execution is completed.

Coordinators communicate with workers and clients by using an HTTP-based
protocol.

Coordinator | 45

Figure 4-3. Client, coordinator, and worker communication processing a SQL statement

Discovery Service
Presto uses a discovery service to find all nodes in the cluster. Every Presto instance
registers with the discovery service on startup and periodically sends a heartbeat sig‐
nal. This allows the coordinator to have an up-to-date list of available workers and
use that list for scheduling query execution.

If a worker fails to report heartbeat signals, the discovery service triggers the failure
detector, and the worker becomes ineligible for further tasks.

To simplify deployment and avoid running an additional service, the Presto coordi‐
nator typically runs an embedded version of the discovery service. It shares the
HTTP server with Presto and thus uses the same port.

Worker configuration of the discovery service therefore typically points at the host
name and port of the coordinator.

Workers
A Presto worker is a server in a Presto installation. It is responsible for executing tasks
assigned by the coordinator and for processing data. Worker nodes fetch data from
data sources by using connectors and then exchange intermediate data with each
other. The final resulting data is passed on to the coordinator. The coordinator is
responsible for gathering the results from the workers and providing the final results
to the client.

During installation, workers are configured to know the hostname or IP address of
the discovery service for the cluster. When a worker starts up, it advertises itself to the
discovery service, which makes it available to the coordinator for task execution.

Workers communicate with other workers and the coordinator by using an HTTP-
based protocol.

46 | Chapter 4: Presto Architecture

Figure 4-4 shows how multiple workers retrieve data from the data sources and col‐
laborate to process the data, until one worker can provide the data to the coordinator.

Figure 4-4. Workers in a cluster collaborate to process SQL statements and data

Connector-Based Architecture
At the heart of the separation of storage and compute in Presto is the connector-
based architecture. A connector provides Presto an interface to access an arbitrary
data source.

Each connector provides a table-based abstraction over the underlying data source.
As long as data can be expressed in terms of tables, columns, and rows by using the
data types available to Presto, a connector can be created and the query engine can
use the data for query processing.

Presto provides a service provider interface (SPI), which is a type of API used to
implement a connector. By implementing the SPI in a connector, Presto can use stan‐
dard operations internally to connect to any data source and perform operations on
any data source. The connector takes care of the details relevant to the specific data
source.

Every connector implements the three parts of the API:

• Operations to fetch table/view/schema metadata
• Operations to produce logical units of data partitioning, so that Presto can paral‐

lelize reads and writes
• Data sources and sinks that convert the source data to/from the in-memory for‐

mat expected by the query engine

Presto provides many connectors to systems such as HDFS/Hive, MySQL, Post‐
greSQL, MS SQL Server, Kafka, Cassandra, Redis, and many more. In Chapter 6 and
Chapter 7, you learn about several of the connectors. The list of available connectors
is continuously growing. Refer to the Presto documentation, described in “Documen‐
tation” on page 13, for the latest list of supported connectors.

Presto’s SPI also gives you the ability to create your own custom connectors. This may
be needed if you need to access a data source without a compatible connector. If you
end up creating a connector, we strongly encourage you to learn more about the

Connector-Based Architecture | 47

Presto open source community, use our help, and contribute your connector. Check
out “Presto Resources” on page 12 for more information. A custom connector may
also be needed if you have a unique or proprietary data source within your organiza‐
tion. This is what allows Presto users to query any data source by using SQL—truly
SQL-on-Anything.

Figure 4-5 shows how the Presto SPI includes separate interfaces for metadata, data
statistics, and data location used by the coordinator, and for data streaming used by
the workers.

Figure 4-5. Overview of the Presto service provider interface (SPI)

Presto connectors are plug-ins loaded by each server at startup. They are configured
by specific parameters in the catalog properties files and loaded from the plug-ins
directory. We explore this more in Chapter 6.

Presto uses a plug-in-based architecture for numerous aspects of its
functionality. Besides connectors, plug-ins can provide implemen‐
tations for event listeners, access controls, and function and type
providers.

Catalogs, Schemas, and Tables
The Presto cluster processes all queries by using the connector-based architecture
described earlier. Each catalog configuration uses a connector to access a specific data
source. The data source exposes one or more schemas in the catalog. Each schema
contains tables that provide the data in table rows with columns using different data
types. You can find out more about catalogs, schemas, tables, and more in Chapter 8,
specifically in “Catalogs” on page 136, “Schemas” on page 137, and “Tables” on page
139.

Query Execution Model
Now that you understand how any real-world deployment of Presto involves a cluster
with a coordinator and many workers, we can look at how an actual SQL query state‐
ment is processed.

48 | Chapter 4: Presto Architecture

Check out Chapters 8 and 9 to learn details about the SQL support
of Presto.

Understanding the execution model provides you the foundational knowledge neces‐
sary to tune Presto’s performance for your particular queries.

Recall that the coordinator accepts SQL statements from the end user, from the CLI
software using the ODBC or JDBC driver or other clients’ libraries. The coordinator
then triggers the workers to get all the data from the data source, creates the result
data set, and makes it available to the client.

Let’s take a closer look into what happens inside the coordinator first. When a SQL
statement is submitted to the coordinator, it is received in textual format. The coordi‐
nator takes that text and parses and analyzes it. It then creates a plan for execution by
using an internal data structure in Presto called the query plan. This flow is displayed
in Figure 4-6. The query plan broadly represents the needed steps to process the data
and return the results per the SQL statement.

Figure 4-6. Processing a SQL query statement to create a query plan

As you can see in Figure 4-7, the query plan generation uses the metadata SPI and the
data statistics SPI to create the query plan. So the coordinator uses the SPI to gather
information about tables and other metadata connecting to the data source directly.

Figure 4-7. The service provider interfaces for query planning and scheduling

Query Execution Model | 49

The coordinator uses the metadata SPI to get information about tables, columns, and
types. These are used to validate that the query is semantically valid, and to perform
type checking of expressions in the original query and security checks.

The statistics SPI is used to obtain information about row counts and table sizes to
perform cost-based query optimizations during planning.

The data location SPI is then facilitated in the creation of the distributed query plan.
It is used to generate logical splits of the table contents. Splits are the smallest unit of
work assignment and parallelism.

The different SPIs are more of a conceptual separation; the actual
lower-level Java API is separated by different Java packages in a
more fine-grained manner.

The distributed query plan is an extension of the simple query plan consisting of one
or more stages. The simple query plan is split into plan fragments. A stage is the run‐
time incarnation of a plan fragment, and it encompasses all the tasks of the work
described by the stage’s plan fragment.

The coordinator breaks up the plan to allow processing on clusters facilitating work‐
ers in parallel to speed up the overall query. Having more than one stage results in the
creation of a dependency tree of stages. The number of stages depends on the com‐
plexity of the query. For example, queried tables, returned columns, JOIN statements,
WHERE conditions, GROUP BY operations, and other SQL statements all impact the
number of stages created.

Figure 4-8 shows how the logical query plan is transformed into a distributed query
plan on the coordinator in the cluster.

Figure 4-8. Transformation of the query plan to a distributed query plan

50 | Chapter 4: Presto Architecture

The distributed query plan defines the stages and the way the query is to execute on a
Presto cluster. It’s used by the coordinator to further plan and schedule tasks across
the workers. A stage consists of one or more tasks. Typically, many tasks are involved,
and each task processes a piece of the data.

The coordinator assigns the tasks from a stage out to the workers in the cluster, as
displayed in Figure 4-9.

Figure 4-9. Task management performed by the coordinator

The unit of data that a task processes is called a split. A split is a descriptor for a seg‐
ment of the underlying data that can be retrieved and processed by a worker. It is the
unit of parallelism and work assignment. The specific operations on the data per‐
formed by the connector depend on the underlying data source.

For example, the Hive connector describes splits in the form of a path to a file with
offset and length that indicate which part of the file needs to be processed.

Tasks at the source stage produce data in the form of pages, which are a collection of
rows in columnar format. These pages flow to other intermediate downstream stages.
Pages are transferred between stages by exchange operators, which read the data from
tasks within an upstream stage.

The source tasks use the data source SPI to fetch data from the underlying data source
with the help of a connector. This data is presented to Presto and flows through the
engine in the form of pages. Operators process and produce pages according to their
semantics. For example, filters drop rows, projections produce pages with new
derived columns, and so on. The sequence of operators within a task is called a pipe‐
line. The last operator of a pipeline typically places its output pages in the task’s out‐
put buffer. Exchange operators in downstream tasks consume the pages from an
upstream task’s output buffer. All these operations occur in parallel on different
workers, as seen in Figure 4-10.

Query Execution Model | 51

Figure 4-10. Data in splits is transferred between tasks and processed on different
workers

So a task is the runtime incarnation of a plan fragment when assigned to a worker.
After a task is created, it instantiates a driver for each split. Each driver is an instantia‐
tion of a pipeline of operators and performs the processing of the data in the split. A
task may use one or more drivers, depending on the Presto configuration and envi‐
ronment, as shown in Figure 4-11. Once all drivers are finished, and the data is
passed to the next split, the drivers and the task are finished with their work and are
destroyed.

Figure 4-11. Parallel drivers in a task with input and output splits

An operator processes input data to produce output data for a downstream operator.
Example operators are table scans, filters, joins, and aggregations. A series of these
operators form an operator pipeline. For example, you may have a pipeline that first
scans and reads the data, and then filters on the data, and finally does a partial aggre‐
gation on the data.

To process a query, the coordinator creates the list of splits with the metadata from
the connector. Using the list of splits, the coordinator starts scheduling tasks on the
workers to gather the data in the splits. During query execution, the coordinator
tracks all splits available for processing and the locations where tasks are running on
workers and processing splits. As tasks finish processing and are producing more
splits for downstream processing, the coordinator continues to schedule tasks until
no splits remain for processing.

Once all splits are processed on the workers, all data is available, and the coordinator
can make the result available to the client.

52 | Chapter 4: Presto Architecture

Query Planning
Before diving into how the Presto query planner and cost-based optimizations work,
let’s set up a stage that frames our considerations in a certain context. We present an
example query as context for our exploration to help you understand the process of
query planning.

Example 4-1 uses the TPC-H data set—see “Presto TPC-H and TPC-DS Connectors”
on page 92—to sum up the value of all orders per nation and list the top five nations.

Example 4-1. Example query to explain query planning

SELECT
 (SELECT name FROM region r WHERE regionkey = n.regionkey) AS region_name,
 n.name AS nation_name,
 sum(totalprice) orders_sum
FROM nation n, orders o, customer c
WHERE n.nationkey = c.nationkey
 AND c.custkey = o.custkey
GROUP BY n.nationkey, regionkey, n.name
ORDER BY orders_sum DESC
LIMIT 5;

Let’s try to understand the SQL constructs used in the query and their purpose:

• A SELECT query using three tables in the FROM clause, implicitly defining a CROSS
JOIN between the nation, orders, and customer tables

• A WHERE condition to retain the matching rows from the nation, orders and
customer tables

• An aggregation using GROUP BY regionkey to aggregate values of orders for each
nation

• A subquery, (SELECT name FROM region WHERE regionkey = n.regionkey), to
pull the region name from the region table; note that this query is correlated, as
if it was supposed to be executed independently for each row of the containing
result set

• An ordering definition, ORDER BY orders_sum DESC, to sort the result before
returning

• A limit of five rows defined to return only nations with the highest order sums
and filter out all others

Query Planning | 53

Parsing and Analysis
Before a query can be planned for execution, it needs to be parsed and analyzed.
Details about SQL and the related syntactic rules for building the query can be found
in Chapter 8 and Chapter 9. Presto verifies the text for these syntax rules when pars‐
ing it. As a next step, Presto analyses the query:

Identifying tables used in a query
Tables are organized within catalogs and schemas, so multiple tables can have the
same name. For example, TPC-H data provides orders tables of various sizes in
the different schemas as sf10.orders, sf100.orders, etc.

Identifying columns used in a query
A qualified column reference orders.totalprice unambiguously refers
to a totalprice column within the orders table. Typically, however, a SQL
query refers to a column by name only—totalprice, as seen in Example 4-1.
The Presto analyzer can determine which table a column originates from.

Identifying references to fields within ROW values
A dereference expression c.bonus may refer to a bonus column in the table
named c or aliased with c. Or, it may refer to bonus field in a c column of row
type (a struct with named fields). It is the job of the analyzer in Presto to decide
which is applicable, with a table-qualified column reference taking precedence in
case of ambiguity. Analysis needs to follow SQL language’s scoping and visibility
rules. The information collected, such as identifier disambiguation, is later used
during planning, so that the planner does not need to understand the query lan‐
guage scoping rules again.

As you see, the query analyzer has complex and cross-cutting duties. Its role is very
technical, and it remains invisible from the user perspective as long as the queries are
correct. The analyzer manifests its existence whenever a query violates SQL language
rules, exceeds user’s privileges, or is unsound for some other reason.

Once the query is analyzed and all identifiers in the query are processed and resolved,
Presto proceeds to the next phase, which is query planning.

Initial Query Planning
A query plan can be viewed as a program that produces query results. Recall that SQL
is a declarative language: the user writes a SQL query to specify the data they want
from the system. Unlike an imperative program, the user does not specify how to
process the data to get the result. This part is left to the query planner and optimizer
to determine the sequence of steps to process the data for the desired result.

This sequence of steps is often referred to as the query plan. Theoretically, an expo‐
nential number of query plans could yield the same query result. The performance of

54 | Chapter 4: Presto Architecture

the plans varies dramatically, and this is where the Presto planner and optimizer try
to determine the optimal plan. Plans that always produce the same results are called
equivalent plans.

Let’s consider the query shown previously in Example 4-1. The most straightforward
query plan for this query is the one that most closely resembles the query’s SQL syn‐
tactical structure. This plan is shown in Example 4-2. For the purpose of this discus‐
sion, the listing should be self-explanatory. You just need to know that the plan is a
tree, and its execution starts from leaf nodes and proceeds up along the tree structure.

Example 4-2. Manually condensed, straightforward textual representation of the query
plan for example query

- Limit[5]
 - Sort[orders_sum DESC]
 - LateralJoin[2]
 - Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - Filter[c.nationkey = n.nationkey AND c.custkey = o.custkey]
 - CrossJoin
 - CrossJoin
 - TableScan[nation]
 - TableScan[orders]
 - TableScan[customer]
 - EnforceSingleRow[region_name := r.name]
 - Filter[r.regionkey = n.regionkey]
 - TableScan[region]

Each element of the query plan can be implemented in a straightforward, imperative
fashion. For example, TableScan accesses a table in its underlying storage and returns
a result set containing all rows within the table. Filter receives rows and applies a
filtering condition on each, retaining only the rows that satisfy the condition. Cross
Join operates on two data sets that it receives from its child nodes. It produces all
combinations of rows in those data sets, probably storing one of the data sets in
memory, so that the underlying storage does not have to be accessed multiple times.

Latest Presto releases changed naming for the different operations
in a query plan. For example, TableScan is equivalent to ScanPro
ject with a table specification. A Filter operation is renamed to
FilterProject. The ideas presented, however, remain the same.

Let’s now consider the computational complexity of this query plan. Without know‐
ing all the nitty-gritty details of the actual implementation, we cannot fully reason
about the complexity. However, we can assume that the lower bound for the complex‐
ity of a query plan node is the size of the data set it produces. Therefore, we describe
complexity by using Big Omega notation, which describes the asymptotic lower

Query Planning | 55

bound. If N, O, C, and R represent the number of rows in nation, orders, customer,
and region tables, respectively, we can observe the following:

• TableScan[orders] reads the orders table, returning O rows, so its complexity is
Ω(O). Similarly, the other two TableScans return N and C rows; thus their com‐
plexity is Ω(N) and Ω(C), respectively.

• CrossJoin above TableScan[nation] and TableScan[orders] combines the
data from nation and orders tables; therefore, its complexity is Ω(N × O).

• The CrossJoin above combines the earlier CrossJoin, which produced N × O
rows, with TableScan[customer] so with data from the customer table, therefore
its complexity is Ω(N × O × C).

• TableScan[region] at the bottom has complexity Ω(R). However, because of the
LateralJoin, it is invoked N times, with N as the number of rows returned from
the aggregation. Thus, in total, this operation incurs Ω(R × N) computational
cost.

• The Sort operation needs to order a set of N rows, so it cannot take less time
than proportional to N × log(N).

Disregarding other operations for a moment as no more costly than the ones we have
analyzed so far, the total cost of the preceding plan is at least Ω[N + O + C + (N × O)
+ (N × O × C) + (R × N) + (N × log(N))]. Without knowing the relative table sizes,
this can be simplified to Ω[(N × O × C) + (R × N) + (N × log(N))]. Adding a reason‐
able assumption that region is the smallest table and nation is the second smallest,
we can neglect the second and third parts of the result and get the simplified result of
Ω(N × O × C).

Enough of algebraic formulas. It’s time to see what this means in practice! Let’s con‐
sider an example of a popular shopping site with 100 million customers from 200
nations who placed 1 billion orders in total. The CrossJoin of these two tables needs
to materialize 20 quintillion (20,000,000,000,000,000,000) rows. For a moderately
beefy 100-node cluster, processing 1 million rows a second on each node, it would
take over 63 centuries to compute the intermediate data for our query.

Of course, Presto does not even try to execute such a naive plan. A naive plan has its
role, though. The initial plan serves as a bridge between two worlds: the world of SQL
language and its semantic rules, and the world of query optimizations. The role of
query optimization is to transform and evolve the initial plan into an equivalent plan
that can be executed as fast as possible, at least in a reasonable amount of time, given
finite resources of the Presto cluster. Let’s talk about how query optimizations attempt
to reach this goal.

56 | Chapter 4: Presto Architecture

Optimization Rules
In this section, you get to take a look at a handful of the many important optimization
rules implemented in Presto.

Predicate Pushdown
Predicate pushdown is probably the single most important optimization and easiest to
understand. Its role is to move the filtering condition as close to the source of the data
as possible. As a result, data reduction happens as early as possible during query exe‐
cution. In our case, it transforms a Filter into a simpler Filter and an InnerJoin
above the same CrossJoin condition, leading to a plan shown in Example 4-3. Por‐
tions of the plan that didn’t change are excluded for readability.

Example 4-3. Transformation of a CrossJoin and Filter into an InnerJoin

...
- Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - Filter[c.nationkey = n.nationkey AND c.custkey = o.custkey] // original filter
 - CrossJoin
 - CrossJoin
 - TableScan[nation]
 - TableScan[orders]
 - TableScan[customer]
...
...
- Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - Filter[c.nationkey = n.nationkey] // transformed simpler filter
 - InnerJoin[o.custkey = c.custkey] // added inner join
 - CrossJoin
 - TableScan[nation]
 - TableScan[orders]
 - TableScan[customer]
...

The “bigger” join that was present is now converted into InnerJoin on an equality
condition. Without going into details, let’s assume for now that such a join can be
efficiently implemented in a distributed system, with computational complexity equal
to the number of produced rows. This means that predicate pushdown replaced an
“at least” Ω(N × O × C) CrossJoin with a Join that is “exactly” Θ(N × O).

However, predicate pushdown could not improve the CrossJoin between nation and
orders tables because no immediate condition is joining these tables. This is where
cross join elimination comes into play.

Optimization Rules | 57

Cross Join Elimination
In the absence of the cost-based optimizer, Presto joins the tables contained in the
SELECT query in the order of their appearance in the query text. The one important
exception to this occurs when the tables to be joined have no joining condition,
which results in a cross join. In almost all practical cases, a cross join is unwanted, and
all the multiplied rows are later filtered out, but the cross join itself has so much work
to do that it may never complete.

Cross join elimination reorders the tables being joined to minimize the number of
cross joins, ideally reducing it to zero. In the absence of information about relative
table sizes, other than the cross join elimination, table join ordering is preserved, so
the user remains in control. The effect of cross join elimination on our example query
can be seen in Example 4-4. Now both joins are inner joins, bringing overall compu‐
tational cost of joins to Θ(C + O) = Θ(O). Other parts of the query plan did not
change since the initial plan, so the overall query computation cost is at least Ω[O +
(R × N) + (N × log(N))]—of course, the O component representing the number of
rows in the orders table is the dominant factor.

Example 4-4. Reordering the joins such that the cross join is eliminated

...[i]
 - Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - Filter[c.nationkey = n.nationkey] // filter on nationkey first
 - InnerJoin[o.custkey = c.custkey] // then inner join cutkey
 - CrossJoin
 - TableScan[nation]
 - TableScan[orders]
 - TableScan[customer]
...
...
 - Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - InnerJoin[c.custkey = o.custkey] // reordered to custkey first
 - InnerJoin[n.nationkey = c.nationkey] // then nationkey
 - TableScan[nation]
 - TableScan[customer]
 - TableScan[orders]
...

TopN
Typically, when a query has a LIMIT clause, it is preceded by an ORDER BY clause.
Without the ordering, SQL does not guarantee which result rows are returned. The
combination of ORDER BY followed by LIMIT is also present in our query.

When executing such a query, Presto could sort all the rows produced and then
retain just the first few of them. This approach would have Θ(row_count ×

58 | Chapter 4: Presto Architecture

log(row_count)) computational complexity and Θ(row_count) memory footprint.
However, it is not optimal and is wasteful to sort the entire results only to keep a
much smaller subset of the sorted results. Therefore, an optimization rule rolls ORDER
BY followed by LIMIT into a TopN plan node. During query execution, TopN keeps
the desired number of rows in a heap data structure, updating the heap while reading
input data in a streaming fashion. This brings computational complexity down to
Θ(row_count × log(limit)) and memory footprint to Θ(limit). Overall query computa‐
tion cost is now Ω[O + (R × N) + N].

Partial Aggregations
Presto does not need to pass all rows from the orders table to the join because we are
not interested in individual orders. Our example query computes an aggregate, the
sum over totalprice for each nation, so it is possible to pre-aggregate the rows as
shown in Example 4-5. We reduce the amount of data flowing into the downstream
join by aggregating the data. The results are not complete, which is why this is
referred to as a pre-aggregation. But the amount of data is potentially reduced, signifi‐
cantly improving query performance.

Example 4-5. Partial pre-aggregation can significantly improve performance

 ...
 - Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - InnerJoin[c.custkey = o.custkey]
 - InnerJoin[n.nationkey = c.nationkey]
 - TableScan[nation]
 - TableScan[customer]
 - Aggregate[by custkey; totalprice := sum(totalprice)]
 - TableScan[orders]
 ...

For improved parallelism, this kind of pre-aggregation is implemented differently, as
a so-called partial aggregation. Here, we are presenting simplified plans, but in an
actual EXPLAIN plan, this is represented differently than the final aggregation.

This kind of pre-aggregation as shown in Example 4-5 is not always
an improvement. It is detrimental to query performance when par‐
tial aggregation does not reduce the amount of data. For this rea‐
son, the optimization is currently disabled by default and can be
enabled with the push_partial_aggregation_through_join ses‐
sion toggle. By default, Presto uses partial aggregations and places
them above the join to reduce the amount of data transmitted over
the network between Presto nodes. To fully appreciate the role of
these partial aggregations, we would need to consider nonsimpli‐
fied query plans.

Optimization Rules | 59

Implementation Rules
The rules we have covered so far are optimization rules—rules with a goal to reduce
query processing time, a query’s memory footprint, or the amount of data exchanged
over the network. However, even in the case of our example query, the initial plan
contained an operation that is not implemented at all: the lateral join. In the next sec‐
tion, we have a look at how Presto handles these kind of operations.

Lateral Join Decorrelation
The lateral join could be implemented as a for-each loop that traverses all rows from a
data set and executes another query for each of them. Such an implementation is pos‐
sible, but this is not how Presto handles the cases like our example. Instead, Presto
decorrelates the subquery, pulling up all the correlated conditions and forming a regu‐
lar left join. In SQL terms, this corresponds to transformation of a query:

SELECT
 (SELECT name FROM region r WHERE regionkey = n.regionkey)
 AS region_name,
 n.name AS nation_name
FROM nation n

into

SELECT
 r.name AS region_name,
 n.name AS nation_name
FROM nation n LEFT OUTER JOIN region r ON r.regionkey = n.regionkey

Even though we may use such constructs interchangeably, a cautious reader familiar
with SQL semantics immediately realizes that they are not fully equivalent. The first
query fails when they are duplicate entries in the region table with the same region
key, whereas the second query does not fail. Instead, it produces more result rows.
For this reason, lateral join decorrelation uses two additional components besides the
join. First, it “numbers” all the source rows so that they can be distinguished. Second,
after the join, it checks whether any row was duplicated, as shown in Example 4-6. If
duplication is detected, the query processing is failed, to preserve the original query
semantics.

Example 4-6. Lateral join decompositions require additional checks

- TopN[5; orders_sum DESC]
 - MarkDistinct & Check
 - LeftJoin[n.regionkey = r.regionkey]
 - AssignUniqueId
 - Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - ...
 - TableScan[region]

60 | Chapter 4: Presto Architecture

Semi-Join (IN) Decorrelation
A subquery can be used within a query not only to pull information, as we just saw in
the lateral join example, but also to filter rows by using the IN predicate. In fact, an IN
predicate can be used in a filter (the WHERE clause), or in a projection (the SELECT
clause). When you use IN in a projection, it becomes apparent that it is not a simple
Boolean-valued operator like EXISTS. Instead, the IN predicate can evaluate to true,
false, or null.

Let’s consider a query designed to find orders for which the customer and item sup‐
pliers are from the same country, as shown in Example 4-7. Such orders may be inter‐
esting. For example, we may want to save shipping costs, or reduce shipping
environmental impact, by shipping directly from the supplier to the customer,
bypassing our own distribution centers.

Example 4-7. Semi-join (IN) example query

SELECT DISTINCT o.orderkey
FROM lineitem l
 JOIN orders o ON o.orderkey = l.orderkey
 JOIN customer c ON o.custkey = c.custkey
WHERE c.nationkey IN (
 -- subquery invoked multiple times
 SELECT s.nationkey
 FROM part p
 JOIN partsupp ps ON p.partkey = ps.partkey
 JOIN supplier s ON ps.suppkey = s.suppkey
 WHERE p.partkey = l.partkey
);

As with a lateral join, this could be implemented with a loop over rows from the outer
query, where the subquery to retrieve all nations for all suppliers of an item gets
invoked multiple times.

Instead of doing this, Presto decorrelates the subquery—the subquery is evaluated
once, with the correlation condition removed, and then is joined back with the outer
query by using the correlation condition. The tricky part is ensuring that the join
does not multiply result rows (so a deduplicating aggregation is used) and that the
transformation correctly retains the IN predicate’s three-valued logic.

In this case, the deduplicating aggregation uses the same partitioning as the join, so it
can be executed in a streaming fashion, without data exchange over the network and
with minimal memory footprint.

Implementation Rules | 61

Cost-Based Optimizer
In “Query Planning” on page 53, you learned how the Presto planner converts a
query in textual form into an executable and optimized query plan. You learned
about various optimization rules in “Optimization Rules” on page 57, and their
importance for query performance at execution time. You also saw implementation
rules in “Implementation Rules” on page 60, without which a query plan would not
be executable at all.

We walked the path from the beginning, where query text is received from the user, to
the end, where the final execution plan is ready. Along the way, we saw selected plan
transformations, which are critical because they make the plan execute orders of
magnitude faster, or make the plan executable at all.

Now let’s take a closer look at plan transformations that make their decisions based
not only on the shape of the query but also, and more importantly, on the shape of
the data being queried. This is what the Presto state-of-the-art cost-based optimizer
(CBO) does.

The Cost Concept
Earlier, we used an example query as our work model. Let’s use a similar approach,
again for convenience and to ease understanding. As you can see in Example 4-8, cer‐
tain query clauses, which are not relevant for this section, are removed. This allows
you to focus on the cost-based decisions of the query planner.

Example 4-8. Example query for cost-based optimization

SELECT
 n.name AS nation_name,
 avg(extendedprice) as avg_price
FROM nation n, orders o, customer c, lineitem l
WHERE n.nationkey = c.nationkey
 AND c.custkey = o.custkey
 AND o.orderkey = l.orderkey
GROUP BY n.nationkey, n.name;

Without cost-based decisions, the query planner rules optimize the initial plan for
this query to produce a plan, as shown in Example 4-9. This plan is determined solely
by the lexical structure of the SQL query. The optimizer used only the syntactic infor‐
mation; hence it is sometimes called the syntactic optimizer. The name is meant to be
humorous, highlighting the simplicity of the optimizations. Since the query plan is
based only on the query, you can hand-tune or optimize the query by adjusting the
syntactic order of the tables in the query.

62 | Chapter 4: Presto Architecture

Example 4-9. Query join order from the syntactic optimizer

- Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - InnerJoin[o.orderkey = l.orderkey]
 - InnerJoin[c.custkey = o.custkey]
 - InnerJoin[n.nationkey = c.nationkey]
 - TableScan[nation]
 - TableScan[customer]
 - TableScan[orders]
 - TableScan[lineitem]

Now let’s say the query was written differently, changing only the order of the WHERE
conditions:

SELECT
 n.name AS nation_name,
 avg(extendedprice) as avg_price
FROM nation n, orders o, customer c, lineitem l
WHERE c.custkey = o.custkey
 AND o.orderkey = l.orderkey
 AND n.nationkey = c.nationkey
GROUP BY n.nationkey, n.name;

The plan ends up with a different join order as a result:

- Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - InnerJoin[n.nationkey = c.nationkey]
 - InnerJoin[o.orderkey = l.orderkey]
 - InnerJoin[c.custkey = o.custkey]
 - TableScan[customer]
 - TableScan[orders]
 - TableScan[lineitem]
 - TableScan[nation]

The fact that a simple change of ordering conditions affects the query plan, and
therefore the performance of the query, is cumbersome for the SQL analyst. Creating
efficient queries then requires internal knowledge of the way Presto processes the
queries. A query author should not be required to have this knowledge to get the best
performance out of Presto. Beyond people writing queries, tools such as Apache
Superset, Tableau, Qlik, or MicroStrategy do not write the queries to be optimal for
Presto.

The cost-based optimizer ensures that the two variants of the query produce the same
optimal query plan for processing by Presto’s execution engine.

From a time complexity perspective, it does not matter whether you join, for exam‐
ple, the nation table with customer— or, vice versa, the customer table with nation.
Both tables need to be processed, and in the case of hash-join implementation, total
running time is proportional to the number of output rows. However, time complex‐
ity is not the only thing that matters. This is generally true for programs working with

Cost-Based Optimizer | 63

data, but it is especially true for large database systems. Presto needs to be concerned
about memory usage and network traffic as well. To reason about memory and net‐
work usage of the join, Presto needs to better understand how the join is
implemented.

CPU time, memory requirements, and network bandwidth usage are the three
dimensions that contribute to query execution time, both in single-query and con‐
current workloads. These dimensions constitute the cost in Presto.

Cost of the Join
When joining two tables over the equality condition (=), Presto implements an exten‐
ded version of the algorithm known as a hash join. One of the joined tables is called
the build side. This table is used to build a lookup hash table with the join condition
columns as the key. Another joined table is called the probe side. Once the lookup
hash table is ready, rows from the probe side are processed, and the hash table is used
to find matching build-side rows in constant time. By default, Presto uses three-level
hashing in order to parallelize processing as much as possible:

1. Both joined tables are distributed across the worker nodes, based on the hash
values of the join condition columns. Rows that should be matched have
the same values on join condition columns, so they are assigned to the same
node. This reduces the size of the problem by the number of nodes being used at
this stage. This node-level data assignment is the first level of hashing.

2. At a node level, the build side is further scattered across build-side worker
threads, again using a hash function. Building a hash table is a CPU-intensive
process, and using multiple threads to do the job greatly improves throughput.

3. Each worker thread ultimately produces one partition of the final lookup hash
table. Each partition is a hash table itself. The partitions are combined into a two-
level lookup hash table so that we avoid scattering the probe side across multiple
threads as well. The probe side is still processed in multiple threads, but the
threads get their work assigned in batches, which is faster than partitioning the
data by using a hash function.

As you can see, the build side is kept in memory to facilitate fast, in-memory data
processing. Of course, a memory footprint is also associated, proportional to the size
of the build side. This means that the build side must fit into the memory available on
the node. This also means that less memory is available to other operations and to
other queries. This is the memory cost associated with the join. There is also the net‐
work cost. In the algorithm described previously, both joined tables are transferred
over the network to facilitate node-level data assignment.

64 | Chapter 4: Presto Architecture

https://en.wikipedia.org/wiki/Hash_join

The cost-based optimizer can select which table should be the build table, controlling
the memory cost of the join. Under certain conditions, the optimizer can also avoid
sending one of the tables over the network, thus reducing network bandwidth usage
(reducing the network cost). To do its job, the cost-based optimizer needs to know
the size of the joined tables, which is provided as the table statistics.

Table Statistics
In “Connector-Based Architecture” on page 47, you learned about the role of connec‐
tors. Each table is provided by a connector. Besides table schema information and
access to actual data, the connector can provide table and column statistics:

• Number of rows in a table
• Number of distinct values in a column
• Fraction of NULL values in a column
• Minimum and maximum values in a column
• Average data size for a column

Of course, if some information is missing—for example, the average text length in a
varchar column is not known—a connector can still provide other information, and
the cost-based optimizer uses what is available.

With an estimation of the number of rows in the joined tables and, optionally, aver‐
age data size for columns, the cost-based optimizer already has sufficient knowledge
to determine the optimal ordering of the tables in our example query. The CBO can
start with the biggest table (lineitem) and subsequently join the other tables—
orders, then customer, then nation:

- Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - InnerJoin[l.orderkey = o.orderkey]
 - InnerJoin[o.custkey = c.custkey]
 - InnerJoin[c.nationkey = n.nationkey]
 - TableScan[lineitem]
 - TableScan[orders]
 - TableScan[customer]
 - TableScan[nation]

Such a plan is good and should be considered because every join has the smaller rela‐
tion as the build side, but it is not necessarily optimal. If you run the example query,
using a connector that provides table statistics, you can enable the cost-based opti‐
mizer with the session property:

SET SESSION join_reordering_strategy = 'AUTOMATIC';

Cost-Based Optimizer | 65

With the table statistics available from the connector, Presto may come up with a dif‐
ferent plan:

- Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - InnerJoin[l.orderkey = o.orderkey]
 - TableScan[lineitem]
 - InnerJoin[o.custkey = c.custkey]
 - TableScan[orders]
 - InnerJoin[c.nationkey = n.nationkey]
 - TableScan[customer]
 - TableScan[nation]

This plan was chosen because it avoids sending the biggest table (lineitem) three
times over the network. The table is scattered across the nodes only once.

The final plan depends on the actual sizes of joined tables and the number of nodes in
a cluster, so if you’re trying this out on your own, you may get a different plan than
the one shown here.

Cautious readers notice that the join order is selected based only on the join condi‐
tions, the links between tables, and the data size of the tables, including number of
rows and average data size for each column. Other statistics are critical for optimizing
more involved query plans, which contain intermediate operations between table
scans and the joins—for example, filters, aggregations, and non-inner joins.

Filter Statistics
As you just saw, knowing the sizes of the tables involved in a query is fundamental to
properly reordering the joined tables in the query plan. However, knowing just the
table sizes is not enough. Consider a modification of our example query, in which the
user added another condition like l.partkey = 638, in order to drill down in their
data set for information about orders for a particular item:

SELECT
 n.name AS nation_name,
 avg(extendedprice) as avg_price
FROM nation n, orders o, customer c, lineitem l
WHERE n.nationkey = c.nationkey
 AND c.custkey = o.custkey
 AND o.orderkey = l.orderkey
 AND l.partkey = 638
GROUP BY n.nationkey, n.name;

Before the condition was added, lineitem was the biggest table, and the query was
planned to optimize handling of that table. But now, the filtered lineitem is one of
the smallest joined relations.

66 | Chapter 4: Presto Architecture

Looking at the query plan shows that the filtered lineitem table is now small enough.
The CBO puts the table on the build side of the join, so that it serves as a filter for
other tables:

- Aggregate[by nationkey...; orders_sum := sum(totalprice)]
 - InnerJoin[l.orderkey = o.orderkey]
 - InnerJoin[o.custkey = c.custkey]
 - TableScan[customer]
 - InnerJoin[c.nationkey = n.nationkey]
 - TableScan[orders]
 - Filter[partkey = 638]
 - TableScan[lineitem]
 - TableScan[nation]

To estimate the number of rows in the filtered lineitem table, the CBO again uses
statistics provided by a connector: the number of distinct values in a column and
fraction of NULL values in a column. For the partkey = 638 condition, no NULL value
satisfies the condition, so the optimizer knows that the number of rows gets reduced
by the fraction of NULL values in the partkey column. Further, if you assume roughly
uniform distribution of values in the column, you can derive the final number of
rows:

filtered rows = unfiltered rows * (1 - null fraction)
 / number of distinct values

Obviously, the formula is correct only when the distribution of values is uniform.
However, the optimizer does not need to know the number of rows; it just needs to
know the estimation of it, so being somewhat off is not a problem in general. Of
course, if an item is bought much more frequently than others—say, Starburst candies
—the estimation may be too far off, and the optimizer may choose a bad plan. Cur‐
rently, when this happens, you have to disable the CBO.

In the future, connectors can be able to provide information about the data distribu‐
tion to handle cases like this. For example, if a histogram were available for the data,
then the CBO could more accurately estimate the filtered rows.

Table Statistics for Partitioned Tables
One special case of filtered table deserves being mentioned separately: partitioned
tables. Data may be organized into partitioned tables in a Hive/HDFS warehouse
accessed by the Hive connector; see “Hive Connector for Distributed Storage Data
Sources” on page 93. When the data is filtered by a condition on partitioning keys,
only matching partitions are read during query executions. Furthermore, since the
table statistics are stored in Hive on a per-partition basis, the CBO gets statistics
information only for partitions that are read, so it’s more accurate.

Of course, every connector can provide this kind of improved stats for filtered rela‐
tions. We are referring only to the way the Hive connector provides statistics here.

Cost-Based Optimizer | 67

Join Enumeration
So far, we’ve discussed how the CBO leverages data statistics, in order to come up
with an optimal plan for executing a query. In particular, it chooses an optimal join
order, which affects the query performance substantially for two primary reasons:

Hash join implementation
The hash join implementation is asymmetric. It is important to carefully choose
which input is the build side and which input is the probe side.

Distributed join type
It is important to carefully choose whether to broadcast or redistribute the data
to the join inputs.

Broadcast Versus Distributed Joins
In the previous section, you learned about the hash join implementation and the
importance of the build and probe sides. Because Presto is a distributed system, joins
can be done in parallel across a cluster of workers, where each worker processes a
fraction of the join. For a distributed join to occur, the data may need to be dis‐
tributed across the network, and different strategies are available that vary in effi‐
ciency, depending on the data shape.

Broadcast join strategy
In a broadcast join strategy, the build side of the join is broadcast to all the worker
nodes that are performing the join in parallel. In other words, each join gets a com‐
plete copy of the data for the build side, as displayed in Figure 4-12. This is semanti‐
cally correct only if the probe side remains distributed across the workers without
duplication. Otherwise, duplicate results are created.

Figure 4-12. Broadcast join strategy visualization

The broadcast join strategy is advantageous when the build side is small, allowing for
a cost-effective transmission of data. The advantage is also greater when the probe
side is very large because it avoids having to redistribute the data as is necessary in
the distributed join case.

68 | Chapter 4: Presto Architecture

Distributed join strategy
In a distributed join strategy, the input data to both the build side and the probe side
are redistributed across the cluster such that the workers perform the join in parallel.
The difference in data transmission over the network is that each worker receives a
unique fraction of the data set, rather than a copy of the data as performed in the
broadcast join case. The data redistribution must use a partitioning algorithm such
that the matching join key values are sent to the same node. For example, say we have
the following data sets of join keys on a particular node:

Probe: {4, 5, 6, 7, 9, 10, 11, 14}
Build: {4, 6, 9, 10, 17}

Consider a simple partitioning algorithm:

if joinkey mod 3 == 0 then send to Worker 1
if joinkey mod 3 == 1 then send to Worker 2
if joinkey mod 3 == 2 then send to Worker 3

The partitioning results in these probes and builds on Worker 1:

Probe:{6, 9}
Build:{6, 9}

Worker 2 deals with different probes and builds:

Probe: {4, 7, 10}
Build: {4, 10}

And, finally, Worker 3 deals with a different subset:

Probe:{5, 11, 14}
Build: {17}

By partitioning the data, the CBO guarantees that the joins can be computed in paral‐
lel without having to share information during the processing. The advantage of a
distributed join is that it allows Presto to compute a join whereby both sides are very
large and there is not enough memory on a single machine to hold the entirety of the
probe side in memory. The disadvantage is the extra data being sent over the net‐
work.

The decision between a broadcast join and distributed join strategy must be costed.
Each strategy has trade-offs, and we must take into account the data statistics in order
to cost the optimal one. Furthermore, this also needs to be decided during the join
reordering process. Depending on the join order and where filters are applied, the
data shape changes. This could lead to cases in which a distributed join between two
data sets may be best in one join order scenario, but a broadcast join maybe better in
a different scenario. The join enumeration algorithm takes this into consideration.

Cost-Based Optimizer | 69

The join enumeration algorithm used by Presto is rather complex
and beyond the scope of this book. It is documented in detail on a
Starburst blog post. It breaks the problem into subproblems with
smaller partitions, finds the correct join usage with recursions, and
aggregates the results up to a global result.

Working with Table Statistics
In order to leverage the CBO in Presto, your data must have statistics. Without data
statistics, the CBO cannot do much; it requires data statistics to estimate rows and
costs of the different plans.

Because Presto does not store data, producing statistics for Presto is connector-
implementation dependent. As of the time of this writing, the Hive connector pro‐
vides data statistics to Presto. Other data sources, such as the relational database
connectors, could also provide statistics. For example, PostgreSQL can collect and
store statistics of its data. The PostgreSQL connector implementation could be exten‐
ded to provide these statistics to Presto’s CBO. However, at the time of this writing, it
is not available in open source. We expect that, over time, more connectors will sup‐
port statistics, and you should continue to refer to the Presto documentation for up-
to-date information.

For the Hive connectors, you can use the following ways to collect statistics:

• Use Presto’s ANALYZE command to collect statistics.
• Enable Presto to gather statistics when writing data to a table.
• Use Hive’s ANALYZE command to collect statistics.

It is important to note that Presto stores statistics in the Hive metastore, the same
place that Hive uses to store statistics. So if you’re sharing the same tables between
Hive and Presto, they overwrite each others’ statistics. This is something you should
take into consideration when determining how to manage statistics collection.

Presto ANALYZE
Presto provides an ANALYZE command to collect statistics for a connector; for exam‐
ple, the Hive connector. When run, Presto computes column-level statistics by using
its execution engine and stores the statistics in the Hive metastore. The syntax is as
follows:

ANALYZE table_name [WITH (property_name = expression [, ...])]

70 | Chapter 4: Presto Architecture

https://www.starburstdata.com/technical-blog/presto-join-enumeration

For example, if you want to collect and store statistics from the flights table, you
can run the following:

ANALYZE hive.ontime.flights;

In the partitioned case, we can use the WITH clause if we want to analyze only a partic‐
ular partition:

ANALYZE hive.ontime.flights WITH (partitions = ARRAY[ARRAY['01-01-2019']])

The nested array is needed when you have more than one partition key, and you’d like
each key to be an element in the next array. The topmost array is used if you have
multiple partitions you want to analyze. The ability to specify a partition is very use‐
ful in Presto. For example, you may have some type of ETL process that creates new
partitions. As new data comes in, statistics could become stale, as they do not incor‐
porate the new data. However, by updating statistics for the new partition, you don’t
have to reanalyze all the previous data.

Gathering Statistics When Writing to Disk
If you have tables for which the data is always written through Presto, statistics can be
collected during write operations. For example, if you run a CREATE TABLE AS, or an
INSERT SELECT query, Presto collects the statistics as it is writing the data to disk
(HDFS or S3, for example) and then stores the statistics in the Hive metastore.

This is a useful feature, as it does not require you to run the manual step of ANALYZE.
The statistics are never stale. However, for this to work properly and as expected, the
data in the table must always be written by Presto.

The overhead of this process has been extensively benchmarked and tested, and it
shows negligible impact to performance. To enable the feature, you can add the fol‐
lowing property into your catalog properties file by using the Hive connector:

hive.collect-column-statistics-on-write=true

Hive ANALYZE
Outside of Presto, you can still use the Hive ANALYZE command to collect the statistics
for Presto. The computation of the statistics is performed by the Hive execution
engine and not the Presto execution engine, so the results may vary, and there is
always the risk of Presto behaving differently when using statistics generated by Hive
versus Presto. It’s generally recommended to use Presto to collect statistics. But there
may be reasons for using Hive, such as if the data lands as part of a more complex
pipeline and is shared with other tools that may want to use the statistics. To collect
statistics by using Hive, you can run the following commands:

hive> ANALYZE TABLE hive.ontime.flights COMPUTE STATISTICS;
hive> ANALYZE TABLE hive.ontime.flights COMPUTE STATISTICS FOR COLUMNS;

Working with Table Statistics | 71

For complete information on the Hive ANALYZE command, you can refer to the offi‐
cial Hive documentation.

Displaying Table Statistics
Once you have collected the statistics, it is often useful to view them. You may want to
do this to confirm that statistics have been collected, or perhaps you are debugging a
performance issue and want to see the statistics being used.

Presto provides a SHOW STATS command:

SHOW STATS FOR hive.ontime.flights;

Alternatively, if you want to see the statistics on a subset of data, you can provide a
filtering condition. For example:

SHOW STATS FOR (SELECT * FROM hive.ontime.flights WHERE year > 2010);

Conclusion
Now you understand the Presto architecture, with a coordinator receiving user
requests and then using workers to assemble all the data from the data sources.

Each query is translated into a distributed query plan of tasks in numerous stages.
The data is returned by the connectors in splits and processed in multiple stages until
the final result is available and provided to the user by the coordinator.

If you are interested in the Presto architecture in even more detail, you can dive into
the paper “Presto: SQL on Everything” by the Presto creators, published at the IEEE
International Conference on Data Engineering (ICDE) and available on the website;
see “Website” on page 12.

Next, you are going to learn more about deploying a Presto cluster in Chapter 5,
hooking up more data sources with different connectors in Chapters 6 and 7, and
writing powerful queries in Chapter 8.

72 | Chapter 4: Presto Architecture

https://cwiki.apache.org/confluence/display/Hive/StatsDev
https://cwiki.apache.org/confluence/display/Hive/StatsDev

CHAPTER 5

Production-Ready Deployment

Following the installation of Presto from the tar.gz archive in Chapter 2, and your
new understanding of the Presto architecture from Chapter 4, you are now ready to
learn more about the details of installing a Presto cluster. You can then take that
knowledge and work toward a production-ready deployment of a Presto cluster with
a coordinator and multiple worker nodes.

Configuration Details
The Presto configuration is managed in multiple files discussed in the following sec‐
tions. They are all located in the etc directory located within the installation directory
by default.

The default location of this folder, as well of as each individual configuration file, can
be overridden with parameters passed to the launcher script, discussed in “Launcher”
on page 77.

Server Configuration
The file etc/config.properties provides the configuration for the Presto server. A Presto
server can function as a coordinator, or a worker, or both at the same time. Dedicat‐
ing a single server to perform only coordinator work, and adding a number of other
servers as dedicated workers, provides the best performance and creates a Presto
cluster.

The contents of the file are of critical importance, specifically since they determine
the role of the server as a worker or coordinator, which in turn affects resource usage
and configuration.

73

All worker configurations in a Presto cluster should be identical.

The following are the basic allowed Presto server configuration properties. In later
chapters, as we discuss features such as authentication, authorization, and resource
groups, we cover additional optional properties.

coordinator=true|false

Allows this Presto instance to function as a coordinator and therefore accept
queries from clients and manage query execution. Defaults to true. Setting the
value to false dedicates the server as worker.

node-scheduler.include-coordinator=true|false

Allows scheduling work on the coordinator. Defaults to true. For larger clusters,
we suggest setting this property to false. Processing work on the coordinator
can impact query performance because the server resources are not available for
the critical task of scheduling, managing, and monitoring query execution.

http-server.http.port=8080 and http-server.https.port=8443
Specifies the ports used for the server for the HTTP/HTTPS connection. Presto
uses HTTP for all internal and external communication.

query.max-memory=5GB

The maximum amount of distributed memory that a query may use. This is
described in greater detail in Chapter 12.

query.max-memory-per-node=1GB

The maximum amount of user memory that a query may use on any one
machine. This is described in greater detail in Chapter 12.

query.max-total-memory-per-node=2GB

The maximum amount of user and system memory that a query may use on any
one server. System memory is the memory used during execution by readers,
writers, network buffers, etc. This is described in greater detail in Chapter 12.

discovery-server.enabled=true

Presto uses the discovery service to find all the nodes in the cluster. Every Presto
instance registers with the discovery service on startup. To simplify deployment
and avoid running an additional service, the Presto coordinator can run an
embedded version of the discovery service. It shares the HTTP server with Presto
and thus uses the same port. Typically set to true on the coordinator. Required to
be disabled on all workers by removing the property.

74 | Chapter 5: Production-Ready Deployment

discovery.uri=http://localhost:8080

The URI to the discovery server. When running the embedded version of discov‐
ery in the Presto coordinator, this should be the URI of the Presto coordinator,
including the correct port. This URI must not end in a slash.

Logging
The optional Presto logging configuration file, etc/log.properties, allows setting the
minimum log level for named logger hierarchies. Every logger has a name, which is
typically the fully qualified name of the Java class that uses the logger. Loggers use the
Java class hierarchy. The packages used for all components of Presto can be seen in
the source code, discussed in “Source Code, License, and Version” on page 14.

For example, consider the following log levels file:

io.prestosql=INFO
io.prestosql.plugin.postgresql=DEBUG

The first line sets the minimum level to INFO for all classes inside io.prestosql,
including nested packages such as io.prestosql.spi.connector and io.pres
tosql.plugin.hive. The default level is INFO, so the preceding example does not
actually change logging for any packages in the first line. Having the default level in
the file just makes the configuration more explicit. However, the second line over‐
rides the logging configuration for the PostgreSQL connector to debug-level logging.

There are four levels, DEBUG, INFO, WARN, and ERROR, sorted by decreasing verbosity.
Throughout the book, we may refer to setting logging when discussing topics such as
troubleshooting in Presto.

When setting the logging levels, keep in mind that DEBUG levels can
be verbose. Only set DEBUG on specific lower-level packages that
you are actually troubleshooting to avoid creating large numbers of
log messages, negatively impacting the performance of the system.

After starting Presto, you find the various log files in the var/log directory within the
installation directory, unless you specified another location in the etc/node.properties
file:

launcher.log
This log, created by the launcher (see “Launcher” on page 77), is connected to
standard out (stdout) and standard error (stderr) streams of the server. It con‐
tains a few log messages from the server initialization and any errors or diagnos‐
tics produced by the JVM.

Logging | 75

server.log
This is the main log file used by Presto. It typically contains the relevant informa‐
tion if the server fails during initialization, as well as most information concern‐
ing the actual running of the application, connections to data sources, and more.

http-request.log
This is the HTTP request log, which contains every HTTP request received by
the server. These include all usage of the Web UI, Presto CLI, as well as JDBC or
ODBC connection discussed in Chapter 3, since all of them operate using HTTP
connections. It also includes authentication and authorizations logging.

All log files are automatically rotated and can also be configured in more detail in
terms of size and compression.

Node Configuration
The node properties file, etc/node.properties, contains configuration specific to a sin‐
gle installed instance of Presto on a server—a node in the overall Presto cluster.

The following is a small example file:

node.environment=production
node.id=ffffffff-ffff-ffff-ffff-ffffffffffff
node.data-dir=/var/presto/data

The following parameters are the allowed Presto configuration properties:

node.environment=demo

The required name of the environment. All Presto nodes in a cluster must have
the same environment name. The name shows up in the Presto Web UI header.

node.id=some-random-unique-string

An optional unique identifier for this installation of Presto. This must be unique
for every node. This identifier should remain consistent across reboots or
upgrades of Presto, and therefore be specified. If omitted, a random identifier is
created with each restart.

node.data-dir=/var/presto/data

The optional filesystem path of the directory, where Presto stores log files and
other data. Defaults to the var folder inside the installation directory.

76 | Chapter 5: Production-Ready Deployment

JVM Configuration
The JVM configuration file, etc/jvm.config, contains a list of command-line options
used for starting the JVM running Presto.

The format of the file is a list of options, one per line. These options are not inter‐
preted by the shell, so options containing spaces or other special characters should
not be quoted.

The following provides a good starting point for creating etc/jvm.config:

-server
-mx16G
-XX:+UseG1GC
-XX:G1HeapRegionSize=32M
-XX:+UseGCOverheadLimit
-XX:+ExplicitGCInvokesConcurrent
-XX:+HeapDumpOnOutOfMemoryError
-XX:+ExitOnOutOfMemoryError
-Djdk.attach.allowAttachSelf=true

Because an OutOfMemoryError typically leaves the JVM in an inconsistent state, we
write a heap dump for debugging and forcibly terminate the process when this
occurs.

The -mx option is an important property in this file. It sets the maximum heap space
for the JVM. This determines how much memory is available for the Presto process.

The configuration to allow the JDK/JVM to attach to itself is required for Presto
usage since the update to Java 11.

More information about memory and other JVM settings is discussed in Chapter 12.

Launcher
As mentioned in Chapter 2, Presto includes scripts to start and manage Presto in the
bin directory. These scripts require Python.

The run command can be used to start Presto as a foreground process.

In a production environment, you typically start Presto as a background daemon
process:

$ bin/launcher start
Started as 48322

The number 48322 you see in this example is the assigned process ID (PID). It differs
at each start.

JVM Configuration | 77

You can stop a running Presto server, which causes it to shut down gracefully:

$ bin/launcher stop
Stopped 48322

When a Presto server process is locked or experiences other problems, it can be use‐
ful to forcefully stop it with the kill command:

$ bin/launcher kill
Killed 48322

You can obtain the status and PID of Presto with the status command:

$ bin/launcher status
Running as 48322

If Presto is not running, the status command returns that information:

$ bin/launcher status
Not running

Besides the mentioned commands, the launcher script supports numerous options
that can be used to customize the configuration file locations and other parameters.
The --help option can be used to display the full details:

$ bin/launcher --help
Usage: launcher [options] command

Commands: run, start, stop, restart, kill, status

Options:
 -h, --help show this help message and exit
 -v, --verbose Run verbosely
 --etc-dir=DIR Defaults to INSTALL_PATH/etc
 --launcher-config=FILE Defaults to INSTALL_PATH/bin/launcher.properties
 --node-config=FILE Defaults to ETC_DIR/node.properties
 --jvm-config=FILE Defaults to ETC_DIR/jvm.config
 --config=FILE Defaults to ETC_DIR/config.properties
 --log-levels-file=FILE Defaults to ETC_DIR/log.properties
 --data-dir=DIR Defaults to INSTALL_PATH
 --pid-file=FILE Defaults to DATA_DIR/var/run/launcher.pid
 --launcher-log-file=FILE Defaults to DATA_DIR/var/log/launcher.log (only in
 daemon mode)
 --server-log-file=FILE Defaults to DATA_DIR/var/log/server.log (only in
 daemon mode)
 -D NAME=VALUE Set a Java system property

Other installation methods use these options to modify paths. For example, the RPM
package, discussed in “RPM Installation” on page 80, adjusts the path to better com‐
ply with Linux filesystem hierarchy standards and conventions. You can use them for
similar needs, such as complying with enterprise-specific standards, using specific
mount points for storage, or simply using paths outside the Presto installation direc‐
tory to ease upgrades.

78 | Chapter 5: Production-Ready Deployment

Cluster Installation
In Chapter 2, we discussed installing Presto on a single machine, and in Chapter 4,
you learned more about how Presto is designed and intended to be used in a dis‐
tributed environment.

For any real use, other than for demo purposes, you need to install Presto on a cluster
of machines. Fortunately, the installation and configuration is similar to installing on
a single machine. It requires a Presto installation on each machine, either by instal‐
ling manually or by using a deployment automation system like Ansible.

So far, you’ve deployed a single Presto server process to act as both a coordinator and
a worker. For the cluster installation, you need to install and configure one coordina‐
tor and multiple workers.

Simply copy the downloaded tar.gz archive to all machines in the cluster and extract
it.

As before, you have to add the etc folder with the relevant configuration files. A set of
example configuration files for the coordinator and the workers is available in the
cluster-installation directory of the support repository of the book; see “Book Reposi‐
tory” on page 15. The configuration files need to exist on every machine you want to
be part of the cluster.

The configurations are the same as the simple installation for the coordinator and
workers, with some important differences:

• The coordinator property in config.properties is set to true on the coordinator
and set to false on the workers.

• The node-scheduler is set to exclude the coordinator.
• The discovery-uri property has to point to the IP address or hostname of the

coordinator on all workers and the coordinator itself.
• The discovery server has to be disabled on the workers, by removing the

property.

The main configuration file, etc/config.properties, suitable for the coordinator:

coordinator=true
node-scheduler.include-coordinator=false
http-server.http.port=8080
query.max-memory=5GB
query.max-memory-per-node=1GB
query.max-total-memory-per-node=2GB
discovery-server.enabled=true
discovery.uri=http://<coordinator-ip-or-host-name>:8080

Cluster Installation | 79

Note the difference of the configuration file, etc/config.properties, suitable for the
workers:

coordinator=false
http-server.http.port=8080
query.max-memory=5GB
query.max-memory-per-node=1GB
query.max-total-memory-per-node=2GB
discovery.uri=http://<coordinator-ip-or-host-name>:8080

With Presto installed and configured on a set of nodes, you can use the launcher to
start Presto on every node. Generally, it is best to start the Presto coordinator first,
followed by the Presto workers:

$ bin/launcher start

As before, you can use the Presto CLI to connect to the Presto server. In the case of a
distributed setup, you need to specify the address of the Presto coordinator using the
--server option. If you are running the Presto CLI on the Presto coordinator node
directly, you do not need to specify this option, as it defaults to localhost:8080:

$ presto --server <coordinator-ip-or-host-name>:8080

You can now verify that the Presto cluster is running correctly. The nodes system
table contains the list of all the active nodes that are currently part of the cluster. You
can query it with a SQL query:

presto> SELECT * FROM system.runtime.nodes;
 node_id | http_uri | node_version | coordinator | state
---------+------------------------+--------------+---------------------
c00367d | http://<http_uri>:8080 | 330 | true | active
9408e07 | http://<http_uri>:8080 | 330 | false | active
90dfc04 | http://<http_uri>:8080 | 330 | false | active
(3 rows)

The list includes the coordinator and all connected workers in the cluster. The coor‐
dinator and each worker expose status and version information by using the REST
API at the endpoint /v1/info; for example, http://worker-or-coordinator-host-
name/v1/info.

You can also confirm the number of active workers using the Presto Web UI.

RPM Installation
Presto can be installed using the RPM Package Manager (RPM) on various Linux dis‐
tributions such as CentOS, Red Hat Enterprise Linux, and others.

The RPM package is available on the Maven Central Repository at https://
repo.maven.apache.org/maven2/io/prestosql/presto-server-rpm. Locate the RPM in the
folder with the desired version and download it.

80 | Chapter 5: Production-Ready Deployment

http://worker-or-coordinator-host-name/v1/info
http://worker-or-coordinator-host-name/v1/info
https://repo.maven.apache.org/maven2/io/prestosql/presto-server-rpm
https://repo.maven.apache.org/maven2/io/prestosql/presto-server-rpm

You can download the archive with wget; for example, for version 330:

$ wget https://repo.maven.apache.org/maven2/ \
io/prestosql/presto-server-rpm/330/presto-server-rpm-330.rpm

With administrative access, you can install Presto with the archive in single-node
mode:

$ sudo rpm -i presto-server-rpm-*.rpm

The rpm installation creates the basic Presto configuration files and a service control
script to control the server. The script is configured with chkconfig, so that the ser‐
vice is started automatically on the operating system boot. After installing Presto
from the RPM, you can manage the Presto server with the service command:

service presto [start|stop|restart|status]

Installation Directory Structure
When using the RPM-based installation method, Presto is installed in a directory
structure more consistent with the Linux filesystem hierarchy standards. This means
that not everything is contained within the single Presto installation directory struc‐
ture as we have seen so far. The service is configured to pass the correct paths to
Presto with the launcher script:

/usr/lib/presto/
The directory contains the various libraries needed to run the product. Plug-ins
are located in a nested plugin directory.

/etc/presto
This directory contains the general configuration files such as node.properties,
jvm.config, and config.properties. Catalog configurations are located in a nested
catalog directory.

/etc/presto/env.sh
This file sets the Java installation path used.

/var/log/presto
This directory contains the log files.

/var/lib/presto/data
This is the data directory.

/etc/rc.d/init.d/presto
This directory contains the service scripts for controlling the server process.

The node.properties file requires the following two additional properties, since our
directory structure is different from the defaults used by Presto:

RPM Installation | 81

catalog.config-dir=/etc/presto/catalog
plugin.dir=/usr/lib/presto/plugin

Configuration
The RPM package installs Presto acting as coordinator and worker out of the box,
identical to the tar.gz archive. To create a working cluster, you can update the config‐
uration files on the nodes in the cluster manually, use the presto-admin tool, or use a
generic configuration management and provisioning tool such as Ansible.

Uninstall Presto
If Presto is installed using RPM, you can uninstall it the same way you remove any
other RPM package:

$ rpm -e presto

When removing Presto, all files and configurations, apart from the logs direc‐
tory /var/log/presto, are deleted. Create a backup copy if you wish to keep anything.

Installation in the Cloud
A typical installation of Presto involves running at least one cluster with a coordina‐
tor and multiple workers. Over time, the number of workers in the cluster, as well as
the number of clusters, can change based on the demand from users.

The number and type of connected data sources, as well as their location, also has a
major impact on choosing where to install and run your Presto cluster. Typically, it is
desirable that the Presto cluster has a high-bandwidth, low-latency network connec‐
tivity to the data sources.

The simple requirements of Presto, discussed in Chapter 2, allow you to run Presto in
many situations. You can run it on different machines such as physical servers or vir‐
tual machines, as well as Docker containers.

Presto is known to work on private cloud deployments as well as on many public
cloud providers including Amazon Web Services (AWS), Google Cloud Platform
(GCP), Microsoft Azure, and others.

Using containers allows you to run Presto on Kubernetes (k8s) clusters such as Ama‐
zon Elastic Kubernetes Service (Amazon EKS), Microsoft Azure Kubernetes Service
(AKS), Google Kubernetes Engine (GKE), Red Hat Open Shift, and any other Kuber‐
netes deployments.

An advantage of these cloud deployments is the potential for a highly dynamic clus‐
ter, where workers are created and destroyed on demand. Tooling for such use cases

82 | Chapter 5: Production-Ready Deployment

https://github.com/prestosql/presto-admin

has been created by different users, including cloud vendors embedding Presto in
their offerings and other vendors offering Presto tooling and support.

The Presto project does not provide a complete set of suitable
resources and tooling for running a Presto cluster in a turn-key,
hands-off fashion. Organizations typically create their own pack‐
ages, configuration management setups, container images, k8s
operators, or whatever is necessary, and they use tools such as Con‐
cord or Terraform to create and manage the clusters. Alternatively,
you can consider relying on the support and offerings from a com‐
pany like Starburst.

Cluster Sizing Considerations
An important aspect of getting Presto deployed is sizing the cluster. In the longer run,
you might even work toward multiple clusters for different use cases. Sizing the
Presto cluster is a complex task and follows the same patterns and steps as other
applications:

1. Decide on an initial size, based on rough estimates and available infrastructure.
2. Ensure that the tooling and infrastructure for the cluster is able to scale the

cluster.
3. Start the cluster and ramp up usage.
4. Monitor utilization and performance.
5. React to the findings by changing cluster scale and configuration.

The feedback loop around monitoring, adapting, and continued use allows you to get
a good understanding of the behavior of your Presto deployment.

Many factors influence your cluster performance, and the combination of these is
specific to each Presto deployment:

• Resources like CPU and memory for each node
• Network performance within the cluster and to data sources and storage
• Number and characteristics of connected data sources
• Queries run against the data sources and their scope, complexity, number, and

resulting data volume
• Storage read/write performance of the data sources
• Active users and their usage patterns

Cluster Sizing Considerations | 83

https://concord.walmartlabs.com
https://concord.walmartlabs.com
https://www.terraform.io

Once you have your initial cluster deployed, make sure you take advantage of using
the Presto Web UI for monitoring. Chapter 12 provides more tips.

Conclusion
As you’ve now learned, Presto installation and running a cluster requires just a hand‐
ful of configuration files and properties. Depending on your actual infrastructure and
management system, you can achieve a powerful setup of one or even multiple Presto
clusters. Check out real-world examples in Chapter 13.

Of course, you are still missing a major ingredient of configuring Presto. And that is
the connections to the external data sources that your users can then query with
Presto and SQL. In Chapter 6 and Chapter 7, you get to learn all about the various
data sources, the connectors to access them, and the configuration of the catalogs that
point at specific data sources using the connectors.

84 | Chapter 5: Production-Ready Deployment

CHAPTER 6

Connectors

In Chapter 3, you configured a catalog to use a connector to access a data source in
Presto—specifically, the TPC-H benchmark data—and then learned a bit about how
to query that data with SQL.

Catalogs are an important aspect of using Presto. They define the connection to the
underlying data source and storage system, and use concepts such as connector,
schema, and table. These fundamental concepts are described in Chapter 4, and their
use with SQL is discussed in more detail in Chapter 8.

A connector translates the query and storage concepts of an underlying data source,
such as a relational database management system (RDBMS), object storage, or a key-
value store, to the SQL and Presto concepts of tables, columns, rows, and data types.
These can be simple SQL-to-SQL translations and mappings but also much more
complicated translations from SQL to object storage or NoSQL systems. These can
also be user defined.

You can think of a connector the same way you think of a driver for a database. It
translates the user input into operations that the underlying database can execute.
Every connector implements the Presto service provider interface (SPI). This enables
Presto to allow you to use the same SQL tooling to work with whatever underlying
data source the connector exposes and makes Presto a SQL-on-Anything system.

Query performance is also influenced by the connector implementation. The most
basic connector makes a single connection to the data source and provides the data to
Presto. However, a more advanced connector can break a statement into multiple
connections, performing operations in parallel to allow for better performance.
Another advanced feature of a connector is to provide table statistics, that can then be
used by the cost-based optimizer to create highly performant query plans.. Such a
connector is, however, more complex to implement.

85

Presto provides numerous connectors:

• Connectors for RDBMS systems such as PostgreSQL or MySQL—see “RDBMS
Connector Example PostgreSQL” on page 87

• A Hive connector suitable for querying systems by using the Hadoop Distributed
File System (HDFS) and similar object storage systems—see “Hive Connector for
Distributed Storage Data Sources” on page 93

• Numerous connectors to nonrelational data sources—see “Non-Relational Data
Sources” on page 104

• tpch and tpcds connectors designed to serve TPC benchmark data—see “Presto
TPC-H and TPC-DS Connectors” on page 92

• A connector for Java Management Extensions, or JMX—see “Presto JMX Con‐
nector” on page 104

In this chapter, you learn more about some of these connectors, available from the
Presto project. More than two dozen connectors are shipped in Presto today, and
more are created by the Presto team and the user community. Commercial, propriet‐
ary connectors are also available to further extend the reach and performance of
Presto. Finally, if you have a custom data source, or one that there is not a connector
for, you can implement your own connector by implementing the necessary SPI calls
and drop it into the plug-ins directory in Presto.

One important aspect of the catalog and connector usage is that all of them become
available to SQL statements and queries in Presto at the same time. This means that
you can create queries that span data sources. For example, you can combine data
from a relational database with the data in files stored in your object storage backend.
These federated queries are discussed in more detail in “Query Federation in Presto”
on page 122.

Configuration
As discussed in “Adding a Data Source” on page 23, every data source you want to
access needs to be configured as a catalog by creating a catalog file. The name of the
file determines the name of the catalog when writing queries.

The mandatory property connector.name indicates which connector is used for the
catalog. The same connector can be used multiple times in different catalogs; for
example, to access different RDBMS server instances with different databases all
using the same technology such as PostgreSQL. Or if you have two Hive clusters, you
can configure two catalogs in a single Presto cluster that both use the Hive connector,
allowing you to query data from both Hive clusters.

86 | Chapter 6: Connectors

RDBMS Connector Example PostgreSQL
Presto contains connectors to both open source and proprietary RDBMSs, including
MySQL, PostgreSQL, AWS Redshift, and Microsoft SQL Server. Presto queries these
data sources with the connectors by using each system’s respective JDBC drivers.

Let’s look at a simple example using PostgreSQL. A PostgreSQL instance may consist
of several databases. Each database contains schemas, which contain objects such as
tables and views. When configuring Presto with PostgreSQL, you choose the database
that is exposed as a catalog in Presto.

After creating a simple catalog file pointing at a specific database in the server, etc/
catalog/postgresql.properties shown next, and restarting Presto, you can find out more
information. You can also see that the postgresql connector is configured as the
required connector.name:

connector.name=postgresql
connection-url=jdbc:postgresql://db.example.com:5432/database
connection-user=root
connection-password=secret

The user and password in the catalog properties file determines the
access rights to the underlying data source. This can be used to, for
example, restrict access to read-only operations or to restrict avail‐
able tables.

You can list all catalogs to confirm that the new catalog is available, and inspect
details with the Presto CLI, or a database management tool using the JDBC driver (as
explained in “Presto Command-Line Interface” on page 25 and “Presto JDBC Driver”
on page 30):

SHOW CATALOGS;
 Catalog

 system
 postgresql
(2 rows)

SHOW SCHEMAS IN postgresql;
 Catalog

 public
 airline
(2 rows)

USE postgresql.airline
SHOW TABLES;
 Table

RDBMS Connector Example PostgreSQL | 87

 airport
 carrier
(2 rows)

In this example, you see we connected to a PostgreSQL database that contains two
schemas: public and airline. And then within the airline schema are two tables,
airport and carrier. Let’s try running a query. In this example, we issue a SQL
query to Presto, where the table exists in a PostgreSQL database. Using the Post‐
greSQL connector, Presto is able to retrieve the data for processing, returning the
results to the user:

SELECT code, name FROM airport WHERE code = 'ORD';
 code | name
------+------------------------------
 ORD | Chicago O'Hare International
(1 row)

As displayed in Figure 6-1, the client submits the query to the Presto coordinator. It
offloads the work to a worker, which sends the entire SQL query statement to
PostgrSQL using JDBC. The PostgreSQL JDBC driver is contained within
the PostgresSQL connector. PostgreSQL processes the query and returns the results
over JDBC. The connector reads the results and writes them to the Presto internal
data format. Presto continues the processing on the worker, provides it to the coordi‐
nator, and then returns the results to the user.

Figure 6-1. Presto cluster interaction with PostgreSQL using JDBC in the connector

Query Pushdown
As we saw in the previous example, Presto is able to offload processing by pushing
the SQL statement down into the underlying data source. This is known as query
pushdown, or SQL pushdown. This is advantageous, as the underlying system can
reduce the amount of data returned to Presto, avoiding unnecessary memory, CPU,
and network costs. Furthermore, systems like PostgreSQL typically have indexes on
certain filter columns, allowing for faster processing. However, it is not always

88 | Chapter 6: Connectors

possible to push the entire SQL statement down into the data source. Currently, the
Presto Connector SPI limits the types of operations that can be pushed down to filter
and column projections:

SELECT state, count(*)
FROM airport
WHERE country = 'US'
GROUP BY state;

Given the preceding Presto query, the PostgreSQL connector constructs the SQL
query to push down to PostgreSQL:

SELECT state
FROM airport
WHERE country = 'US';

There are two important places to look when queries are pushed by a RDBMS con‐
nector. The columns in the SELECT list are set to specifically what is needed by Presto.
In this case, we need only the state column for processing the GROUP BY in Presto.
We also push the filter country = 'US', which means we do not need to perform
further processing of the country column in Presto. You notice that the aggregations
are not pushed down to PostgreSQL. This is because Presto is not able to push any
other form of queries down, and the aggregations must be performed in Presto. This
can be advantageous because Presto is a distributed query processing engine, whereas
PostgreSQL is not.

If you do want to push additional processing down to the underlying RDBMS source,
you can accomplish this by using views. If you encapsulate the processing in a view in
PostgreSQL, it is exposed as a table to Presto, and the processing occurs within Post‐
greSQL. For example, let’s say you create the view in PostgreSQL:

CREATE view airline.airports_per_us_state AS
SELECT state, count(*) AS count_star
FROM airline.airport
WHERE country = 'US'
GROUP BY state;

When you run SHOW TABLES in Presto, you see this view:

SHOW TABLES IN postgresql.airline;
 Table

 airport
 carrier
 airports_per_us_state
(3 rows)

RDBMS Connector Example PostgreSQL | 89

Now you can just query the view, and all processing is pushed down to PostgreSQL,
since the view appears as an ordinary table to Presto:

SELECT * FROM airports_per_us_state;

Parallelism and Concurrency
Currently, all RDBMS connectors use JDBC to make a single connection to the
underlying data source. The data is not read in parallel, even if the underlying data
source is a parallel system. For parallel systems, like Teradata or Vertica, you have to
write parallel connectors that can take advantage of how those systems store the data
in a distributed fashion.

When accessing multiple tables from the same RDBMS, a JDBC connection is created
and used for each table in the query. For example, if the query is performing a join
between two tables in PostgreSQL, Presto creates two different connections over
JDBC to retrieve the data, as displayed in Figure 6-2. They run in parallel, send their
results back, and then the join is performed in Presto.

Figure 6-2. Multiple JDBC connections used to access different tables in PostgreSQL

As with aggregations, joins cannot be pushed down. However, if you want to take
advantage of the performance enhancements possible in the underlying PostgreSQL
system, you can create a view in PostgreSQL, or even add native indices for further
improvements.

Other RDBMS Connectors
Currently, the Presto open source project has four RDBMS connectors. The MySQL,
PostgreSQL, AWS Redshift, and Microsoft SQL Server connectors are already
included in the plug-ins directory of Presto and ready to be configured. If you have
multiple servers, or want to separate access, you can configure multiple catalogs in
Presto for each instance. You just need to name the *.properties file differently. As
usual, the name of the properties file determines the name of the catalog:

90 | Chapter 6: Connectors

SHOW CATALOGS;
 Catalog

 system
 mysql-dev
 mysql-prod
 mysql-site
(2 rows)

Nuances exist among different RDBMSs. Let’s take a look at how each is configured in
their catalog configuration files.

In MySQL, there is no difference between a database and a schema, and the catalog
file and the JDBC connection string basically point at the specific MySQL server
instance:

connector.name=mysql
connection-url=jdbc:mysql://example.net:3306
connection-user=root
connection-password=secret

PostgreSQL makes a clear distinction, and an instance can contain multiple databases
that contain schemas. The JDBC connection points at a specific database:

connector.name=postgresql
connection-url=jdbc:postgresql://example.net:5432/database
connection-user=root
connection-password=secret

The AWS Redshift catalog looks similar to PostgreSQL’s. In fact, Redshift uses the
PostgreSQL JDBC driver, since it is based on the open source PostgreSQL code and
the JDBC driver is compatible and can be used:

connector.name=redshift
connection-url=jdbc:postgresql://example.net:5439/database
connection-user=root
connection-password=secret

Microsoft SQL Server connection strings look similar to the MySQL string. However,
SQL Server does have the notion of databases and schemas, and the example simply
connects to the default database:

connector.name=sqlserver
connection-url=jdbc:sqlserver://example.net:1433
connection-user=root
connection-password=secret

Using a different database like sales has to be configured with a property:

connection-url=jdbc:sqlserver://example.net:1433;databaseName=sales

RDBMS Connector Example PostgreSQL | 91

Security
Currently, the only way to authenticate for RDBMS connectors is by storing the user‐
name and password in the catalog configuration file. Since the machines in the Presto
cluster are designed to be a trusted system, this should be sufficient for most uses. In
order to keep Presto and the connected data sources secure, it’s important to secure
access to the machines and configuration files. It should be treated the same way as a
private key. All users of Presto use the same connection to the RDBMS.

If you do not want to store a password in cleartext, there are ways to pass through the
username and password from the Presto client. We discuss this further in Chapter 10.

In conclusion, using Presto with RDBMSs is easy and allows you to expose all the sys‐
tems in one place and query them all at the same time. This usage alone is already
providing a significant benefit of Presto usage. Of course, it gets much more interest‐
ing when you add more data sources with other connectors. So let’s continue to learn
more.

Presto TPC-H and TPC-DS Connectors
You have already discovered the TPC-H connector usage in Chapter 2. Let’s have a
closer look.

The TPC-H and the TPC-DS connector are built into Presto and provide a set of
schemas to support the TPC Benchmark H (TPC-H) and the TPC Benchmark DS
(TPC-DS). These database benchmark suites from the Transaction Processing Perfor‐
mance Council are industry standard benchmarks for database systems, used to
measure the performance of highly complex decision support databases.

The connectors can be used to test the capabilities and query syntax of Presto without
configuring access to an external data source. When you query a TPC-H or TPC-DS
schema, the connector generates some data on the fly by using a deterministic
algorithm.

Create a catalog properties file, etc/catalog/tpch.properties, to configure the TPC-H
connector:

connector.name=tpch

Configuration is similar for the TPC-DS connector; for example, with etc/catalog
/tpcds.properties:

connector.name=tpcds

92 | Chapter 6: Connectors

http://tpc.org
http://tpc.org

Both connectors expose schemas that include the same data sets in terms of structure:

SHOW SCHEMAS FROM tpch;
 Schema

 information_schema
 sf1
 sf100
 sf1000
 sf10000
 sf100000
 sf300
 sf3000
 sf30000
 tiny
(10 rows)

Table 6-1 shows how the different schemas contain increasingly larger numbers of
records in transactional tables such as orders.

Table 6-1. Example record counts for order table in different tpch schemas

Schema Count

tiny 15000

sf1 1500000

sf3 4500000

sf100 150000000

You can use these data sets for learning more about SQL supported by Presto, as dis‐
cussed in Chapter 8 and Chapter 9, without the need to connect another database.

Another important use case of these connectors is the simple availability of the data.
You can use the connectors for development and testing, or even on a production
Presto deployment. With the huge data amounts easily available, you can build quer‐
ies that put a significant load on your Presto cluster. This allows you to better under‐
stand the performance of your cluster, tune and optimize it, and ensure that it
performs over time and across version updates and other changes.

Hive Connector for Distributed Storage Data Sources
As you learned in “A Brief History of Presto” on page 16, Presto is designed to run
fast queries at Facebook scale. Given that Facebook had a massive storage in its Hive
data warehouse, it is only natural that the Hive connector is one of the first connec‐
tors that was developed with Presto.

Hive Connector for Distributed Storage Data Sources | 93

Apache Hadoop and Hive
Before you read about the Hive connector, and its suitability for numerous object
storage formats, you need to brush up on your knowledge about Apache Hadoop and
Apache Hive a bit.

If you’re not that familiar with Hadoop and Hive and want to learn more, we recom‐
mend the official websites of the projects, videos and other resources on the web, and
some of the great books available. For example, Programming Hive by Edward Cap‐
riolo et al. (O’Reilly) has proven to be a great guide to us.

For now, we need to discuss certain Hadoop and Hive concepts to provide enough
context for the Presto usage.

At its very core, Hadoop consists of the Hadoop Distributed File System (HDFS) and
application software, such a Hadoop MapReduce, to interact with the data stored in
HDFS. Apache YARN is used to manage the resources needed by Hadoop applica‐
tions. Hadoop is the leading system for distributed processing of large data sets across
clusters of computers. It is capable of scaling the system while maintaining a highly
available service on top of a cluster of computers.

Originally, data processing was performed by writing MapReduce programs. They
followed a specific programming model that enables the data processing to be natu‐
rally distributed across the cluster. This model works well and is robust. However,
writing MapReduce programs for analytical questions is cumbersome. It also does
not transfer well for existing infrastructure, tooling, and users that rely on SQL and
data warehousing.

Hive provides an alternative to the usage of MapReduce. It was created as a method to
provide a SQL layer of abstraction on top of Hadoop to interact with data in HDFS
using a SQL-like syntax. Now the large set of users who know and understand SQL
can interact with data stored in HDFS.

Hive data is stored as files, often referred to as objects, in HDFS. These files use vari‐
ous formats, such as ORC, Parquet, and others. The files are stored using a particular
directory and file layout that Hive understands; for example, partitioned and buck‐
eted tables. We refer to the layout as a Hive-style table format.

Hive metadata describes how data stored in HDFS maps to schemas, tables, and col‐
umns to be queried via SQL. This metadata information is persisted in a database
such as MySQL or PostgreSQL and is accessible via the Hive Metastore Service (HMS).

The Hive runtime provides the SQL-like query language and distributed execution
layer to execute the queries. The Hive runtime translates the query into a set of Map‐
Reduce programs that can run on a Hadoop cluster. Over time, Hive has evolved to
provide other execution engines such as Apache Tez and Spark that the query is
translated to.

94 | Chapter 6: Connectors

https://hadoop.apache.org
https://hive.apache.org
https://oreil.ly/liekE

Hadoop and Hive are widely used across the industry. With their use, the HDFS for‐
mat has become a supported format for many other distributed storage systems such
as Amazon S3 and S3-compatible stores, Azure Data Lake Storage, Azure Blob Stor‐
age, Google Cloud Storage, and many others.

Hive Connector
The Hive connector for Presto allows you to connect to an HDFS object storage clus‐
ter. It leverages the metadata in HMS and queries and processes the data stored in
HDFS.

Probably the most common use case of Presto is to leverage the Hive connector to
read data from distributed storage such as HDFS or cloud storage.

Presto and the Presto Hive connector do not use the Hive runtime
at all. Presto is a replacement for it and is suitable for running
interactive queries.

The Hive connector allows Presto to read and write from distributed storage such as
HDFS. However, it is not constrained to HDFS but designed to work with distributed
storage in general. Currently, you can configure the Hive connector to work with
HDFS, AWS S3, Azure Blob Storage, Azure Data Lake Storage, Google Cloud Storage,
and S3-compatible storage. S3-compatible storage may include MinIO, Ceph, IBM
Cloud Object Storage, SwiftStack, Cloudian, Riak CS, LeoFS, OpenIO, and others. A
variety of these compatible stores exist. As long as they implement the S3 API and
behave the same way, Presto does not need to know the difference for the most part.

Because of the widespread use of Hadoop and other compatible systems using HDFS
and the expanded feature set of the Hive connector to support them, it can be consid‐
ered the main connector for querying object storage with Presto and is therefore of
critical importance for many, if not most, Presto users.

Architecturally, the Hive connector is a bit different from RBDMS and other connec‐
tors since it does not use the Hive engine itself at all. It therefore cannot push SQL
processing to Hive. Instead, it simply uses the metadata in HMS and accesses the data
directly on HDFS, using the HDFS client provided with the Hadoop project. It also
assumes the Hive table format in the way the data is organized in the distributed
storage.

In all cases, the schema information is accessed from HMS, and the data layout is the
same as with a Hive data warehouse. The concepts are the same, but the data is sim‐
ply stored in a location other than HDFS. However, unlike Hadoop, these non-
Hadoop distributed filesystems do not always have an HMS equivalent to store the

Hive Connector for Distributed Storage Data Sources | 95

metadata for use by Presto. To leverage the Hive-style table format, you must config‐
ure Presto to use HMS from an existing Hadoop cluster or to your own standalone
HMS. This can mean that you use a replacement for HMS such as AWS Glue or run a
minimal Hadoop deployment with HMS only.

Using HMS to describe data in blob storage other than HDFS allows the Hive con‐
nector to be used to query these storage systems. This unlocks the data stored in these
systems to all the power of SQL usage via Presto and any tool capable of using SQL.

Configuring a catalog to use the Hive connector requires you to create a catalog prop‐
erties file with the desired name, for example, etc/catalog/s3.properties, etc/catalog/
gcs.properties, etc/catalog/minio.properties, or even just etc/catalog/hdfs.properties or
etc/catalog/objectstorage.properties. In the following, we assume the use of etc/catalog/
hive.properties. At a minimum, you need to configure the connector name and the
URL for HMS:

connector.name=hive-hadoop2
hive.metastore.uri=thrift://example.net:9083

Numerous other configuration properties apply for different use cases, some of which
you learn more about soon. When in doubt, always make sure to check out the docu‐
mentation; see “Documentation” on page 13. Let’s get into some of those details next.

Hive-Style Table Format
Once the connector is configured, you can create a schema from Presto,f for example,
in HDFS:

CREATE SCHEMA hive.web
WITH (location = 'hdfs://starburst-oreilly/web')

The schema, sometimes still called a database, can contain multiple tables. You can
read more about them in the next section. The schema creation typically creates only
the metadata about the schema in the HMS:

...
hdfs://starburst-oreilly/web/customers
hdfs://starburst-oreilly/web/clicks
hdfs://starburst-oreilly/web/sessions
...

Using Amazon S3 is not much different. You just use a different protocol string:

CREATE SCHEMA hive.web
WITH (location = 's3://example-org/web')

...
s3://example-org/web/customers
s3://example-org/web/clicks
s3://example-org/web/sessions
...

96 | Chapter 6: Connectors

Managed and External Tables
After the schema, we need to learn more about the content in the schema, organized
as tables. Hive distinguishes between managed tables and external tables. A managed
table is managed by Hive, and therefore also by Presto potentially, and is created
along with its data under the location of the database’s directory. An external table is
not managed by Hive and explicitly points to another location outside the directory
that Hive manages.

The main difference between a managed table and an external table is that Hive, and
therefore Presto, owns the data in the managed table. If you drop a managed table,
the metadata in the HMS and the data are deleted. If you drop an external table, the
data remains, and only the metadata about the table is deleted.

The types of tables you use really comes down to the way you plan to use Presto. You
may be using Presto for data federation, your data warehouse or data lake, both, or
some other mix. You need to decide who owns the data. It could be Presto working
with the HMS, or it could be Hadoop and HMS, or Spark, or other tools in an ETL
pipeline. In all cases, the metadata is managed in HMS.

The decision about which system owns and manages HMS and the data is typically
based on your data architecture. In the early use cases of Presto, Hadoop often con‐
trols the data life cycle. But as more use cases leverage Presto as the central tool, many
users shift their pattern, and Presto takes over control.

Some new Presto users start by querying an existing Hadoop deployment. In this
case, it starts off as more of a data federation use, and Hadoop owns the data. You
then configure the Hive connector to expose the existing tables in Hadoop to Presto
for querying. You use external tables. Typically, you do not allow Presto to write to
these tables in this case.

Other Presto users may start to migrate away from Hadoop and completely toward
Presto, or they may start new with another object storage system, specifically, often a
cloud-based system. In this case, it is best to start creating the data definition lan‐
guage (DDL) via Presto to let Presto own the data.

Let’s consider the following DDL for a Presto table:

CREATE TABLE hive.web.page_views (
 view_time timestamp,
 user_id bigint,
 page_url varchar,
 view_date date,
 country varchar
)

In this example, the table page_views stores data under a directory also named
page_views. This page_views directory is either a subdirectory under the directory

Hive Connector for Distributed Storage Data Sources | 97

defined by hive.metastore.warehouse.dir or is a different directory if you defined
the schema location when creating the schema.

Here is an HDFS example:

hdfs:/user/hive/warehouse/web/page_views/...

And here’s an Amazon S3 example:

s3://example-org/web/page_views/...

Next, let’s consider DDL for a Presto table that points to existing data. This data is
created and managed by another means, such as by Spark or an ETL process where
the data lands in storage. In this case, you may create an external table via Presto
pointing to the external location of this data:

CREATE TABLE hive.web.page_views (
 view_time timestamp,
 user_id bigint,
 page_url varchar,
 view_date date,
 country varchar
)
WITH (
 external_location = 's3://starburst-external/page_views'
)

This inserts the metadata about the table into the HMS, including the external path
and a flag that signals to Presto and HMS that the table is external and therefore man‐
aged by another system.

As a result, the data, located in s3://example-org/page_views, may already exist. Once
the table is created in Presto, you can start querying it. When you configure the Hive
connector to an existing Hive warehouse, you see the existing tables and are able to
query from them immediately.

Alternatively, you could create the table in an empty directory and expect the data to
be loaded later, either by Presto or by an external source. In either case, Presto
expects that the directory structure is already created; otherwise, the DDL errors. The
most common case for creating an external table is when data is shared with other
tools.

Partitioned Data
So far, you have learned how the data for a table, whether managed or external, is
stored as one or more files in a directory. Data partitioning is an extension of this and
is a technique used to horizontally divide a logical table into smaller pieces of data
known as partitions.

98 | Chapter 6: Connectors

The concept itself derives from partitioning schemes in RDBMSs. Hive introduced
this technique for data in HDFS as a way to achieve better query performance and
manageability of the data.

Partitioning is now a standard data organization strategy in distributed filesystems,
such as HDFS, and in object storage, such as S3.

Let’s use this table example to demonstrate partitioning:

CREATE TABLE hive.web.page_views (
 view_time timestamp,
 user_id bigint,
 page_url varchar,
 view_date date
)
WITH (
 partitioned_by = ARRAY['view_date']
)

The columns listed in the partitioned_by clause must be the last
columns as defined in the DDL. Otherwise, you get an error from
Presto.

As with nonpartitioned tables, the data for the page_views table is located within …/
page_views. Using partitioning changes the way the table layout is structured. With
partitioned tables, additional subdirectories are added within the table subdirectory.
In the following example, you see the directory structure as defined by the partition
keys:

...

.../page_views/view_date=2019-01-14/...

.../page_views/view_date=2019-01-15/...

.../page_views/view_date=2019-01-16/...

...

Presto uses this same Hive-style table format. Additionally, you can chose to partition
on multiple columns:

CREATE TABLE hive.web.page_views (
 view_time timestamp,
 user_id bigint,
 page_url varchar,
 view_date date,
 country varchar
)
WITH (
 partitioned_by = ARRAY['view_date', 'country']
)

Hive Connector for Distributed Storage Data Sources | 99

When choosing multiple partitioned columns, Presto creates a hierarchical directory
structure:

...

.../page_views/view_date=2019-01-15/country=US…

.../page_views/view_date=2019-01-15/country=PL…

.../page_views/view_date=2019-01-15/country=UA...

.../page_views/view_date=2019-01-16/country=US…

.../page_views/view_date=2019-01-17/country=AR...

...

Partitioning gives you improved query performance, especially as your data grows in
size. For example, let’s take the following query:

SELECT DISTINCT user_id
FROM page_views
WHERE view_date = DATE '2019-01-15' AND country = 'US';

When this query is submitted, Presto recognizes the partition columns in the WHERE
clause and uses the associated value to read only the view_date=2019-01-15/coun‐
try=US subdirectory. By reading only the partition you need, potentially large perfor‐
mance savings can result. If your data is small today, the performance gain might not
be noticeable. But as your data grows, the improved performance is significant.

Loading Data
So far, you’ve learned about the Hive-style table format, including partitioned data.
How do you get the data into the tables? It really depends on who owns the data. Let’s
start under the assumption that you are creating the tables in Presto and loading the
data with Presto:

CREATE TABLE hive.web.page_views (
 view_time timestamp,
 user_id bigint,
 page_url varchar,
 view_date date,
 country varchar
)
WITH (
 partitioned_by = ARRAY['view_date', 'country']
)

To load data via Presto, Presto supports INSERT INTO ... VALUES, INSERT INTO ...
SELECT, and CREATE TABLE AS SELECT. Although INSERT INTO exists, it has limited
use, since it creates a single file and single row for each statement. It is often good to
use as you learn Presto.

INSERT SELECT and CREATE TABLE AS perform the same function. Which one you
use is a matter of whether you want to load into an existing table or create the table as
you’re loading. Let’s take, for example, INSERT SELECT where you may be querying

100 | Chapter 6: Connectors

data from a nonpartitioned external table and loading into a partitioned table in
Presto:

presto:web> INSERT INTO page_views_ext SELECT * FROM page_views;
INSERT: 16 rows

The preceding example shows inserting new data into an external
table. By default, Presto disallows writing to an external table. To
enable it, you need to set hive.non-managed-table-writes-

enabled to true in your catalog configuration file.

If you’re familiar with Hive, Presto does what is known as dynamic partitioning: the
partitioned directory structure is created the first time Presto detects a partition col‐
umn value that doesn’t have a directory.

You can also create an external partitioned table in Presto. Say a directory structure
with data in S3 is as follows:

...
s3://example-org/page_views/view_date=2019-01-14/...
s3://example-org/page_views/view_date=2019-01-15/...
s3://example-org/page_views/view_date=2019-01-16/...
...

We create the external table definition:

CREATE TABLE hive.web.page_views (
 view_time timestamp,
 user_id bigint,
 page_url varchar,
 view_date date
)
WITH (
 partitioned_by = ARRAY['view_date']
)

Now let’s query from it:

presto:web> SELECT * FROM page_views;
 view_time | user_id | page_url | view_date
-----------+---------+----------+-----------
(0 rows)

What happened? Even though we know there is data in it, the HMS does not recog‐
nize the partitions. If you’re familiar with Hive, you know about the MSCK REPAIR
TABLE command to autodiscover all the partitions. Fortunately, Presto has its own
command as well to autodiscover and add the partitions:

Hive Connector for Distributed Storage Data Sources | 101

CALL system.sync_partition_metadata(
 'web',
 'page_views',
 ‘FULL’
)
...

Now that you have added the partitions, let’s try again:

presto:web> SELECT * FROM page_views;
 view_time | user_id | page_url | view_date
-------------------------+---------+----------+------------
 2019-01-25 02:39:09.987 | 123 | ... | 2019-01-14
 ...
 2019-01-25 02:39:11.807 | 123 | ... | 2019-01-15
 ...

Alternatively, Presto provides the ability to create partitions manually. This is often
cumbersome because you have to use the command to define each partition
separately:

CALL system.create_empty_partition[w][x](
 'web',
 'page_views',
 ARRAY['view_date'],
 ARRAY['2019-01-14']
)
...

Adding empty partitions is useful when you want to create the partitions outside
Presto via an ETL process and then want to expose the new data to Presto.

Presto also supports dropping partitions simply by specifying the partition column
value in the WHERE clause of a DELETE statement. And in this example, the data stays
intact because it is an external table:

DELETE FROM hive.web.page_views
WHERE view_date = DATE '2019-01-14'

It is important to emphasize that you do not have to manage your tables and data
with Presto, but you can if desired. Many users leverage Hive, or other tools, to create
and manipulate data, and use Presto only to query the data.

File Formats and Compression
Presto supports many of the common file formats used in Hadoop/HDFS, including
the following:

• ORC

• PARQUET

102 | Chapter 6: Connectors

• AVRO

• JSON

• TEXTFILE

• RCTEXT

• RCBINARY

• CSV

• SEQUENCEFILE

The three most common file formats used by Presto are ORC, Parquet, and Avro data
files. The readers for ORC, Parquet, RC Text, and RC Binary formats are heavily opti‐
mized in Presto for performance.

The metadata in HMS contains the file format information so that Presto knows what
reader to use when reading the data files. When creating a table in Presto, the default
data type is set to ORC. However, the default can be overridden in the CREATE TABLE
statement as part of the WITH properties:

CREATE TABLE hive.web.page_views (
 view_time timestamp,
 user_id bigint,
 page_url varchar,
 ds_date,
 country varchar
)
WITH (
 format = 'ORC'
)

The default storage format for all tables in the catalog can be set with the
hive.storage-format configuration in the catalog properties file.

By default, the GZIP compression codec is used by Presto for writing files. You can
change the code to use SNAPPY or NONE by setting the hive.compression-codec con‐
figuration in the catalog properties file.

MinIO Example
MinIO is an S3-compatible, lightweight distributed storage system you can use with
Presto and the Hive connector. If you want to explore its use in more detail, you can
check out our example project.

Hive Connector for Distributed Storage Data Sources | 103

https://min.io
https://github.com/starburstdata/presto-minio

If your HDFS is secured with Kerberos, you can learn more about
configuring the Hive connector in “Kerberos Authentication with
the Hive Connector” on page 225.

Non-Relational Data Sources
Presto includes connectors to query variants of nonrelational data sources. These
data sources are often referred to as NoSQL systems and can be key-value stores, col‐
umn stores, stream processing systems, document stores, and other systems.

Some of these data sources provide SQL-like query languages such as CQL for
Apache Cassandra. Others provide only specific tools or APIs to access the data or
include entirely different query languages such as the Query Domain Specific Lan‐
guage used in Elasticsearch. The completeness of these languages is often limited and
not standardized.

Presto connectors for these NoSQL data sources allow you to run SQL queries for
these systems as if they were relational. This allows you to use applications such as
business intelligence tools or allow those who know SQL to query these data sources.
This includes use of joins, aggregations, subqueries, and other advanced SQL capabil‐
ities against these data sources.

In the next chapter, you learn more about some of these connectors:

• NoSQL system such as Elasticsearch or MongoDB—“Document Store Connector
Example: Elasticsearch” on page 120

• Streaming systems such as Apache Kafka—“Streaming System Connector Exam‐
ple: Kafka” on page 118

• Key-value store systems such as Apache Accumulo—“Key-Value Store Connector
Example: Accumulo” on page 110 and Apache Cassandra—“Apache Cassandra
Connector” on page 117

• Apache HBase with Apache Phoenix connector—“Connecting to HBase with
Phoenix” on page 109

Let’s skip over these for now and talk about some simpler connectors and related
aspects first.

Presto JMX Connector
The JMX connector can easily be configured for use in the catalog properties file etc/
catalog/jmx.properties:

connector.name=jmx

104 | Chapter 6: Connectors

https://cassandra.apache.org

The JMX connector exposes runtime information about the JVMs running the Presto
coordinator and workers. It uses Java Management Extensions (JMX) and allows you
to use SQL in Presto to access the available information. It is especially useful for
monitoring and troubleshooting purposes.

The connector exposes a history schema for historic, aggregate data, a current
schema with up-to-date information and the information_schema schema for
metadata.

The easiest way to learn more is to use Presto statements to investigate the available
tables:

SHOW TABLES FROM jmx.current;
 Table
--
 com.sun.management:type=diagnosticcommand
 com.sun.management:type=hotspotdiagnostic
 io.airlift.discovery.client:name=announcer
 io.airlift.discovery.client:name=serviceinventory
 io.airlift.discovery.store:name=dynamic,type=distributedstore
 io.airlift.discovery.store:name=dynamic,type=httpremotestore

As you can see, the table names use the Java classpath for the metrics emitting classes
and parameters. This means that you need to use quotes when referring to the table
names in SQL statements. Typically, it is useful to find out about the available col‐
umns in a table:

DESCRIBE jmx.current."java.lang:type=runtime";
 Column | Type | Extra | Comment
------------------------+---------+-------+---------
 bootclasspath | varchar | |
 bootclasspathsupported | boolean | |
 classpath | varchar | |
 inputarguments | varchar | |
 librarypath | varchar | |
 managementspecversion | varchar | |
 name | varchar | |
 objectname | varchar | |
 specname | varchar | |
 specvendor | varchar | |
 specversion | varchar | |
 starttime | bigint | |
 systemproperties | varchar | |
 uptime | bigint | |
 vmname | varchar | |
 vmvendor | varchar | |
 vmversion | varchar | |
 node | varchar | |
 object_name | varchar | |
(19 rows)

Presto JMX Connector | 105

This allows you to get information nicely formatted:

SELECT vmname, uptime, node FROM jmx.current."java.lang:type=runtime";
 vmname | uptime | node
--------------------------+---------+--------------
 OpenJDK 64-Bit Server VM | 1579140 | ffffffff-ffff
(1 row)

Notice that only one node is returned in this query since this is a simple installation
of a single coordinator/worker node, as described in Chapter 2.

The JMX connector exposes a lot of information about the JVM in general, including
as Presto specific aspects. You can start exploring the available information by look‐
ing at the tables starting with presto; for example, with DESCRIBE jmx.cur

rent."presto.execution:name=queryexecution";.

Here are a few other describe statements worth checking out:

DESCRIBE jmx.current."presto.execution:name=querymanager";
DESCRIBE jmx.current."presto.memory:name=clustermemorymanager";
DESCRIBE jmx.current."presto.failuredetector:name=heartbeatfailuredetector";

To learn more about monitoring Presto by using the Web UI and other related
aspects, you can head over to Chapter 12.

Black Hole Connector
The black hole connector can easily be configured for use in a catalog properties file
such as etc/catalog/blackhole.properties:

connector.name=blackhole

It acts as a sink for any data, similar to the null device in Unix operating sys‐
tems, /dev/null. This allows you to use it as a target for any insert queries reading
from other catalogs. Since it does not actually write anything, you can use this to
measure read performance from those catalogs.

For example, you can create a test schema in blackhole and create a table from the
tpch.tiny data set. Then you read a data set from the tpch.sf3 data and insert it into
the blackhole catalog:

CREATE SCHEMA blackhole.test;
CREATE TABLE blackhole.test.orders AS SELECT * from tpch.tiny.orders;
INSERT INTO blackhole.test.orders SELECT * FROM tpch.sf3.orders;

This operation essentially measures read performance from the tpch catalog, since it
reads 1.5 million order records and then sends them to blackhole. Using other sche‐
mas like tcph.sf100 increases the data-set size. This allows you to assess the perfor‐
mance of your Presto deployment.

106 | Chapter 6: Connectors

A similar query with a RDBMS, object storage, or a key-value store catalog can be
helpful for query development and performance testing and improvements.

Memory Connector
The memory connector can be configured for use in a catalog properties file; for
example, etc/catalog/memory.properties:

connector.name=memory

You can use the memory connector like a temporary database. All data is stored in
memory in the cluster. Stopping the cluster destroys the data. Of course, you can also
actively use SQL statements to remove data in a table or even drop the table
altogether.

Using the memory connector is useful for testing queries or temporary storage. For
example, we use it as a simple replacement for the need to have an external data
source configured when using the Iris data set; see “Iris Data Set” on page 15.

While useful for testing and small tasks, the memory connector is
not suitable for large data sets and production usage, especially
when distributed across a cluster. For example, the data might be
distributed across different worker nodes, and a crash of a worker
results in loss of that data. Use the memory connector only for
temporary data.

Other Connectors
As you now know, the Presto project includes many connectors, yet sometimes you
end up in a situation where you need just one more connector for that one specific
data source.

The good news is that you are not stuck. The Presto team, and the larger Presto com‐
munity, are constantly expanding the list of available connectors, so by the time you
read this book, the list is probably longer than it is now.

Connectors are also available from parties outside the Presto project itself. This
includes other community members and users of Presto, who wrote their own con‐
nectors and have not yet contributed them back, or cannot contribute for one reason
or another.

Connectors are also available from commercial vendors of database systems, so ask‐
ing the owner or creator of the system you want to query is a good idea. And the
Presto community includes commercial vendors, such as Starburst, which bundle
Presto with support and extensions, including additional or improved connectors.

Memory Connector | 107

Last, but not least, you have to keep in mind that Presto is a welcoming community
around the open source project. So you can, and are encouraged to, look at the code
of the existing connectors, and create new connectors as desired. Ideally, you can
even work with the project and contribute a connector back to the project to enable
simple maintenance and usage going forward.

Conclusion
Now you know a lot more about the power of Presto to access a large variety of data
sources. No matter what data source you access, Presto makes the data available to
you for querying with SQL and SQL-powered tools. In particular, you learned about
the crucial Hive connector, used to query distributed storage such as HDFS or cloud
storage systems. In the next chapter, Chapter 7, you can learn more details about a
few other connectors that are widely in use.

Detailed documentation for all the connectors is available on the Presto website; see
“Website” on page 12. And if you do not find what you are looking for, you can even
work with the community to create your own connector or enhance existing
connectors.

108 | Chapter 6: Connectors

CHAPTER 7

Advanced Connector Examples

Now you know what functionality connectors provide to Presto and how to configure
them from Chapter 6. Let’s expand that knowledge to some of the more complex
usage scenarios and connectors. These are typically connectors that need to be smart
enough to translate storage patterns and ideas from the underlying data source,
which do not easily map to the table-oriented model from SQL and Presto.

Learn more by jumping right to the section about the system you want to connect to
with Presto and query with SQL:

• “Connecting to HBase with Phoenix” on page 109
• “Key-Value Store Connector Example: Accumulo” on page 110
• “Apache Cassandra Connector” on page 117
• “Streaming System Connector Example: Kafka” on page 118
• “Document Store Connector Example: Elasticsearch” on page 120

After these connectors, you can round out your understanding by learning about
query federation and the related ETL usage in “Query Federation in Presto” on page
122.

Connecting to HBase with Phoenix
The distributed, scalable, big data store Apache HBase builds on top of HDFS. Users
are, however, not restricted to use low-level HDFS and access it with the Hive con‐
nector. The Apache Phoenix project provides a SQL layer to access HBase, and thanks
to the Presto Phoenix connector, you can therefore access HBase databases from
Presto just like any other data source.

As usual, you simply need a catalog file like etc/catalog/bigtables.properties:

109

http://hbase.apache.org
https://phoenix.apache.org

connector.name=phoenix
phoenix.connection-url=jdbc:phoenix:zookeeper1,zookeeper2:2181:/hbase

The connection URL is a JDBC connection string to the database. It includes a list of
the Apache ZooKeeper nodes, used for the discovery of the HBase nodes.

Phoenix schemas and tables are mapped to Presto schemas and tables, and you can
inspect them with the usual Presto statements:

SHOW SCHEMAS FROM bigtable;
SHOW TABLES FROM bigtable.example;
SHOW COLUMNS FROM bigtable.examples.user;

Now you are ready to query any HBase tables and use them in the downstream tool‐
ing, just like the data from any other data source connected to Presto.

Using Presto allows you to query HBase with the performance benefits of a horizon‐
tally scaled Presto. Any queries you create have access to HBase and any other cata‐
log, allowing you to combine HBase data with other sources into federated queries.

Key-Value Store Connector Example: Accumulo
Presto includes connectors for several key-value data stores. A key-value store is a sys‐
tem for managing a dictionary of records stored and retrieved by using a unique key.
Imagine a hash table for which a record is retrieved by a key. This record may be a
single value, multiple values, or even a collection.

Several key-value store systems exist that have a range of functionality. One widely
used system is the open source, wide column store database Apache Cassandra, for
which a Presto connector is available. You can find more information in “Apache Cas‐
sandra Connector” on page 117.

Another example we now discuss in more detail is Apache Accumulo. It is a highly
performant, widely used, open source key-value store that can be queried with a
Presto connector. The general concepts translate to other key-value stores.

Inspired by Google’s BigTable, Apache Accumulo is a sorted, distributed key-value
store for scalable stores and retrieval. Accumulo stores key-value data on HDFS sor‐
ted by the key.

Figure 7-1 shows how a key in Accumulo consists of a triplet of row ID, column, and
timestamp. The key is sorted first by the key and the column in ascending lexico‐
graphic order, and then timestamps in descending order.

110 | Chapter 7: Advanced Connector Examples

https://cassandra.apache.org
https://accumulo.apache.org

Figure 7-1. A key-value pair in Accumulo

Accumulo can be further optimized by utilizing column families and locality groups.
Most of this is transparent to Presto, but knowing the access patterns of your SQL
queries may help you optimize your creation of Accumulo tables. This is identical to
optimizing the tables for any other application using Accumulo.

Let’s take a look at the logical representation of a relational table in Table 7-1.

Table 7-1. Relational or logic view of the data in Accumulo

rowid flightdate flightnum origin dest

1234 2019-11-02 2237 BOS DTW

5678 2019-11-02 133 BOS SFO

… … … … …

Because Accumulo is a key-value store, it stores this representation of data on disk
differently from the logic view, as shown in Table 7-2. This nonrelational storage
makes it less straightforward to determine how Presto can read from it.

Table 7-2. View of how Accumulo stores data

rowid column value

1234 flightdate:flightdate 2019-11-02

1234 flightnum:flightnum 2237

1234 origin:origin BOS

1234 dest:dest DTW

5678 flightdate:flightdate 2019-11-02

5678 flightnum:flightnum 133

5678 origin:origin BOS

5678 dest:dest SFO

… … …

The Presto Accumulo connector handles mapping the Accumulo data model into a
relational one that Presto can understand.

Figure 7-2 shows that Accumulo uses HDFS for storage and ZooKeeper to manage
metadata about the tables.

Key-Value Store Connector Example: Accumulo | 111

Figure 7-2. Basic Accumulo architecture consisting of distributed Accumulo, HDFS, and
Apache ZooKeeper

At its core, Accumulo is a distributed system that consists of a master node and mul‐
tiple tablet servers, as displayed in Figure 7-3. Tablet servers contain and expose tab‐
lets, which are horizontally partitioned pieces of a table. Clients connect directly to
the tablet server to scan the data that is needed.

Figure 7-3. Accumulo architecture with master node and multiple tablet servers

Just like Accumulo itself, the Presto Accumulo connector uses ZooKeeper. It reads all
information such as tables, views, table properties, and column definitions from the
ZooKeeper instance used by Accumulo.

Let’s take a look at how to scan data in Accumulo from Presto. In Accumulo, key pairs
can be read from a table by using the Scanner object. The scanner starts reading from
the table at a particular key and ends at another key, or at the end of the table. The
scanners can be configured to read only the exact columns needed. Recall from the
RDBMS connectors that only the columns needed are added to the SQL query gener‐
ated to push into the database.

Accumulo also has the notion of a BatchScanner object. This is used when reading
from Accumulo over multiple ranges. This is more efficient because it is able to use
multiple workers to communicate with Accumulo, displayed in Figure 7-4.

The user first submits the query to the coordinator, and the coordinator communi‐
cates with Accumulo to determine the splits from the metadata. It determines the
splits by looking for the ranges from the available index in Accumulo. Accumulo
returns the row IDs from the index, and Presto stores these ranges in the split. If an
index cannot be used, one split is used for all the ranges in a single tablet. Last, the
worker uses the information to connect to the specific tablet servers and pulls the
data in parallel from Accumulo. This pulls the database by using the BatchScanner
utility from Accumulo.

112 | Chapter 7: Advanced Connector Examples

Figure 7-4. Multiple workers accessing Accumulo in parallel

Once the data is pulled back from the workers, the data is put into a relational format
that Presto understands, and the remainder of the processing is completed by Presto.
In this case, Accumulo is being used for the data storage. Presto provides the higher-
level SQL interface for access to the data in Accumulo.

If you were writing an application program yourself to retrieve the data from Accu‐
mulo, you’d write something similar to the following Java snippet. You set the ranges
to be scanned and define which columns to fetch:

ArrayList<Range> ranges = new ArrayList<Range>();
ranges.add(new Range("1234"));
ranges.add(new Range("5678"));

BatchScanner scanner = client.createBatchScanner("flights", auths, 10);
scanner.setRangers(ranges);
scanner.fetchColumn("flightdate");
scanner.fetchColumn("flightnum");
scanner.fetchColumn("origin");

 for (Entry<Key,Value> entry : scanner) {
 // populate into Presto format
 }
}

The concept of pruning columns that do not need to be read is similar to the RDBMS
connectors. Instead of pushing down SQL, the Accumulo connector uses the Accu‐
mulo API to set what columns to fetch.

Using the Presto Accumulo Connector
To use Accumulo, create a catalog properties file (for example, etc/catalog/accu‐
mulo.properties) that references the Accumulo connector and configures the Accu‐
mulo access including the connection to ZooKeeper:

Key-Value Store Connector Example: Accumulo | 113

connector.name=accumulo
accumulo.instance=accumulo
accumulo.zookeepers=zookeeper.example.com:2181
accumulo.username=user
accumulo.password=password

Using our flights example from earlier, let’s create a table in Accumulo with Presto,
using the Presto CLI, or a RDBMS management tool connected to Presto via JDBC:

CREATE TABLE accumulo.ontime.flights (
 rowid VARCHAR,
 flightdate VARCHAR,
 flightnum, INTEGER,
 origin VARCHAR
 dest VARCHAR
);

When you create this table in Presto, the connector actually creates a table in Accu‐
mulo and the metadata about the table in ZooKeeper.

It is also possible to create a column family. A column family in Accumulo is an opti‐
mizer for applications that accesses columns together. By defining column families,
Accumulo arranges how columns are stored on disk such that the frequently accessed
columns, as part of a column family, are stored together. If you want to create a table
using column families, you can specify this as a table property, specified in the WITH
statement:

CREATE TABLE accumulo.ontime.flights (
 rowid VARCHAR,
 flightdate VARCHAR,
 flightnum, INTEGER,
 origin VARCHAR
 dest VARCHAR
)
WITH
 column_mapping = 'origin:location:origin,dest:location:dest'
);

By using column_mapping, you are able to define a column family location with col‐
umn qualifiers origin and dest, which are the same as the Presto column names.

When the column_mapping table property is not used, Presto auto-
generates a column family and column qualifier to be the same
name as the Presto column name. You can observe the Accumulo
column family and column qualifier by running the DESCRIBE
command on the table.

114 | Chapter 7: Advanced Connector Examples

The Presto Accumulo connector supports INSERT statements:

INSERT INTO accumulo.ontime.flights VALUES
 (2232, '2019-10-19', 118, 'JFK', 'SFO');

This is a convenient way to insert data. However, it is currently low throughput when
data is written to Accumulo from Presto. For better performance, you need to use the
native Accumulo APIs. The Accumulo connector has utilities outside Presto for
assisting with higher performance of inserting data. You can find more information
about loading data by using the separate tool in the Presto documentation.

The table we created in the preceding example is an internal table. The Presto Accu‐
mulo connector supports both internal and external tables. The only difference
between the types is that dropping of an external table deletes only the metadata and
not the data itself. External tables allow you to create Presto tables that already exist
in Accumulo. Furthermore, if you need to change the schema, such as to add a col‐
umn, you can simply drop the table and re-create it in Presto without losing the data.
It’s worth noting that Accumulo can support this schema evolution when each row
does not need to have the same set of columns.

Using external tables requires a bit more work because the data is already stored in a
particular way. For example, you must use the column_mapping table property when
using external tables. You must set the external property to true when creating the
table:

CREATE TABLE accumulo.ontime.flights (
 rowid VARCHAR,
 flightdate VARCHAR,
 flightnum, INTEGER,
 origin VARCHAR
 dest VARCHAR
)
WITH
 external = true,
 column_mapping = 'origin:location:origin,dest:location:dest'
);

Predicate Pushdown in Accumulo
In the Accumulo connector, Presto can take advantage of the secondary indexes built
in Accumulo. To achieve this, the Accumulo connector requires a custom server-side
iterator on each Accumulo tablet server. The iterator is distributed as a JAR file that
you have to copy into the $ACCUMULO_HOME/lib/ext on each tablet server. You
can find the exact details of how to do this in the Presto documentation.

Indexes in Accumulo are used to look up the row IDs. These can be used to read the
values from the actual table. Let’s look at an example:

Key-Value Store Connector Example: Accumulo | 115

SELECT flightnum, origin
FROM flights
WHERE flightdate BETWEEN DATE '2019-10-01' AND 2019-11-05'
AND origin = 'BOS';

Without an index, Presto reads the entire data set from Accumulo and then filters it
within Presto. The workers get splits that contain the Accumulo range to read. This
range is the entire range of the tablet. Where there is an index, such as the example
index in Table 7-3, the number of ranges to process can be significantly reduced.

Table 7-3. Example index on the flights table

2019-08-10 flightdate_flightdate:2232 []

2019-10-19 flightdate_flightdate:2232 []

2019-11-02 flightdate_flightdate:1234 []

2019-11-02 flightdate_flightdate:5478 []

2019-12-01 flightdate_flightdate:1111 []

SFO origin_origin:2232 []

BOS origin_origin:3498 []

BOS origin_origin:1234 []

BOS origin_origin:5678 []

ATL origin_origin:1111 []

… … …

The coordinator uses the WHERE clause filters flightdate BETWEEN DATE

'2019-10-01' AND 2019-11-05' AND origin = 'BOS' to scan the index to obtain
the row IDs for the table. The row IDs are then packed into the split that the worker
later uses to access the data in Accumulo. In our example, we have secondary indexes
on flightdate and origin and we collected the row IDs {2232, 1234, 5478} and
{3498, 1234, 5678}. We take the intersection from each index and know that we
have to only scan row IDs {1234, 5678}. This range is then placed into the split for
processing by the worker, which can access the individual values directly, as seen in
the detailed view of the data in Table 7-4.

Table 7-4. Detail view with the individual values for origin, dest, and others

Rowid Column Value

2232 flightdate:flightdate 2019-10-19

2232 flightnum:flightnum 118

2232 origin:origin JFK

2232 dest:dest SFO

1234 flightdate:flightdate 2019-11-02

1234 flightnum:flightnum 2237

116 | Chapter 7: Advanced Connector Examples

Rowid Column Value

1234 origin:origin BOS

1234 dest:dest DTW

5678 flightdate:flightdate 2019-11-02

5678 flightnum:flightnum 133

5678 origin:origin BOS

5678 dest:dest SFO

3498 flightdate:flightdate 2019-11-10

3498 flightnum:flightnum 133

3498 origin:origin BOS

3498 dest:dest SFO

… … …

To take advantage of predicate pushdown, we need to have indexes on the columns
we want to push down predicates for. Through the Presto connector, indexing on col‐
umns can be easily enabled with the index_columns table property:

CREATE TABLE accumulo.ontime.flights (
 rowid VARCHAR,
 flightdate VARCHAR,
 flightnum, INTEGER,
 origin VARCHAR
 dest VARCHAR
)
WITH
 index_columns = 'flightdate,origin'
);

In this section on Apache Accumulo, you learned about key-value storage and how
Presto can be used to query it with standard SQL. Let’s see another, much more wide‐
spread system that can benefit from Presto: Apache Cassandra.

Apache Cassandra Connector
Apache Cassandra is a distributed, wide column store that supports massive amounts
of data. Its fault tolerant architecture and the linear scalability have led to wide adop‐
tion of Cassandra.

The typical approach to work with the data in Cassandra is to use the custom query
language created for Cassandra: Cassandra Query Language (CQL). While CQL on
the surface looks quite a bit like SQL, it practically misses many of the useful features
of SQL, such as joins. Overall, it is different enough to make using standard tools that
rely on SQL impossible.

Apache Cassandra Connector | 117

https://cassandra.apache.org

By using the Cassandra connector, however, you can allow SQL querying of your data
in Cassandra. Minimal configuration is a simple catalog file like etc/catalog/sitedata
for a Cassandra cluster tracking all user interaction on a website, for example:

connector.name=cassandra
cassandra.contact-points=sitedata.example.com

With this simple configuration in place, users can query the data in Cassandra. Any
keyspace in Cassandra (for example, cart) is exposed as a schema in Presto, and
tables such as users can be queried with normal SQL now:

SELECT * FROM sitedata.cart.users;

The connector supports numerous configuration properties that allow you to adapt
the catalog to your Cassandra cluster, enable authentication and TLS for the connec‐
tion, and more.

Streaming System Connector Example: Kafka
Streaming systems and publish-subscribe (pub/sub) systems are designed for han‐
dling real-time data feeds. For example, Apache Kafka was created to be a high-
throughput and low-latency platform at LinkedIn. Publishers write messages to Kafka
for the subscribers to consume. Such a system is generally useful for data pipelines
between systems. The Presto Kafka connector is used to read data from Kafka. Cur‐
rently, you cannot use the connector to publish data.

Using the connector, you can use SQL to query data on a Kafka topic and even join it
with other data. The typical use case with Presto is ad hoc querying of the live Kafka
topic streams to inspect and better understand the current status and data flowing
through the system. Using Presto makes this much easier and accessible for data ana‐
lysts and other users who typically don’t have any specific Kafka knowledge but do
know how to write SQL queries.

Another, less common use case for Presto with Kafka is the migration of data from
Kafka. Using a CREATE TABLE AS or an INSERT SELECT statement, you can read data
from the Kafka topic, transform the data using SQL, and then write it to HDFS, S3, or
other storage.

Since Kafka is a streaming system, the exposed topics constantly change their content
as new data comes in. This has to be taken into account when querying Kafka topics
with Presto. Performing a migration of the data with Presto to HDFS or another data‐
base system with permanent storage allows you to preserve the information passing
through your Kafka topics.

Once the data is permanently available in the target database or storage, Presto can be
used to expose it to analytical tools such as Apache Superset; see “Queries, Visualiza‐
tions, and More with Apache Superset” on page 229.

118 | Chapter 7: Advanced Connector Examples

Using the Kafka connector works like any other connector. Create a catalog (for
example, etc/catalog/trafficstream.properties) that uses the Kafka connector, config‐
ures any other required details, and points at your Kafka cluster:

connector.name=kafka
kafka.table-names=web.pages,web.users
kafka.nodes=trafficstream.example.com:9092

Now every topic from Kafka web.pages and web.users is available as a table in
Presto. At any time, that table exposes the entire Kafka topic with all messages cur‐
rently in the topic. Each message in the topic shows up as a row in the table in Presto.
The data is now easily available with SQL queries on Presto, using catalog, schema,
and table names:

SELECT * FROM trafficstream.web.pages;
SELECT * FROM trafficstream.web.users;

Essentially, you can inspect your Kafka topics as they are streamed live with simple
SQL queries.

If you want to migrate the data to another system, such as an HDFS catalog, you can
start with a simple CREATE TABLE AS (CTAS) query:

CREATE TABLE hdfs.web.pages
WITH (
 format = 'ORC',
 partitioned_by = ARRAY['view_date']
)
AS
SELECT *
FROM trafficstream.web.pages;

Once the table exists, you can insert more data into it by running insert queries
regularly:

INSERT INTO hdfs.web.pages
SELECT *
FROM trafficstream.web.pages;

To avoid duplicate copying, you can keep track of some of the internal columns from
Kafka that are exposed by the connector. Specifically, you can use _partition_id,
_partition_offset, _segment_start, _segment_end, and _segment_count. The spe‐
cific setup you use to run the query regularly depends on your Kafka configuration
for removing messages as well as the tools used to run the queries, such as Apache
Airflow, described in “Workflows with Apache Airflow” on page 231.

The mapping of Kafka topics, which are exposed as tables, and their contained
message, can be defined with a JSON file for each topic located in etc/kafka/
schema.tablename.json. For the preceding example, you can define the mapping in
etc/kafka/web.pages.json.

Streaming System Connector Example: Kafka | 119

Kafka messages within a topic use different formats, and the Kafka connector
includes decoders for the most common formats, including Raw, JSON, CSV, and
Avro.

Detailed information for the configuration properties, mapping, and other internal
columns is available in the Presto documentation; see “Documentation” on page 13.

Using Presto with Kafka opens up new analysis and insights into the data streamed
through Kafka and defines another valuable usage of Presto. Another stream process‐
ing system supported by Presto for similar usage is Amazon Kinesis.

Document Store Connector Example: Elasticsearch
Presto includes connectors for well-known document storage systems such as Elastic‐
search or MongoDB. These systems support storage and retrieval of information in
JSON-like documents. Elasticsearch is better suited for indexing and searching docu‐
ments. MongoDB is a general-purpose document store.

Overview
The Presto connectors allow users to use SQL to access these systems and query data
in them, even though no native SQL access exists.

Elasticsearch clusters are often used to store log data or other event streams for
longer-term or even permanent storage. These data sets are often very large, and they
can be a useful resource for better understanding the system emitting the log data in
operation and in a wide variety of scenarios.

Elasticsearch and Presto are a powerful and performant combination, since both sys‐
tems can scale horizontally. Presto scales by breaking up a query and running parts of
it across many workers in the cluster.

Elasticsearch typically operates on its own cluster and scales horizontally as well. It
can shard the index across many nodes and run any search operations in a distributed
manner. Tuning the Elasticsearch cluster for performance is a separate topic that
requires an understanding of the number of documents in the search index, the num‐
ber of nodes in the cluster, the replica sets, the sharding configuration, and other
details.

However, from a client perspective, and therefore also from the perspective of Presto,
this is all transparent, and Elasticsearch simply exposes the cluster with a URL of the
Elasticsearch server.

120 | Chapter 7: Advanced Connector Examples

https://avro.apache.org

Configuration and Usage
Configuring Presto to access Elasticsearch is performed with the creation of a catalog
file such as etc/catalog/search.properties:

connector.name=elasticsearch
elasticsearch.host=searchcluster.example.com

This configuration relies on default values for the port, the schema, and other details,
but is sufficient for querying the cluster. The connector supports numerous data
types from Elasticsearch out of the box. It automatically analyzes each index, config‐
ures each as a table, exposes the table in the default schema, creates the necessary
nested structures and row types, and exposes it all in Presto. Any document in the
index is automatically unpacked into the table structure in Presto. For example, an
index called server is automatically available as a table in the catalog’s default
schema, and you can query Presto for more information about the structure:

DESCRIBE search.default.server;

Users can start querying the index straightaway. The information schema, or the
DESCRIBE command, can be used to understand the created tables and fields for each
index/schema.

Fields in Elasticsearch schemas commonly contain multiple values as arrays. If the
automatic detection does not perform as desired, you can add a field property defini‐
tion of the index mapping. Furthermore, the _source hidden field contains the
source document from Elasticsearch, and if desired, you can use the functions for
JSON document parsing (see “JSON Functions” on page 183) as well as collection
data types (see “Collection Data Types” on page 149). These can generally be helpful
when working with the documents in an Elasticsearch cluster, which are predomi‐
nately JSON documents.

In Elasticsearch, you can expose the data from one or more indexes as alias. This
can also be filtered data. The Presto connector supports alias usage and exposes them
just like any other index as a table.

Query Processing
Once you issue a query from Presto to Elasticsearch, Presto actually takes advantage
of its cluster infrastructure in addition to the already clustered Elasticsearch to
increase performance even more.

Presto queries Elasticsearch to understand all the Elasticsearch shards. It then uses
this information when creating the query plan. It breaks the query into separate splits
that are targeted at the specific shards, and then issues the separate queries to the
shards all in parallel. Once the results come back, they are combined in Presto and

Document Store Connector Example: Elasticsearch | 121

returned to the user. This means that Presto combined with Elasticsearch can use
SQL for querying and be more performant than Elasticsearch on its own.

Also note that this individual connection to specific shards also happens in typical
Elasticsearch clusters where the cluster runs behind a load balancer and is just
exposed via a DNS hostname.

Full-Text Search
Another powerful feature of the connector for Elasticsearch is support for full-text
search. It allows you to use Elasticsearch query strings within a SQL query issued
from Presto.

For example, imagine an index full of blog posts on a website. The documents are
stored in the blogs index. And maybe those posts consist of numerous fields such as
title, intro, post, summary, and authors. With the full-text search, you can write a
simple query that searches the whole content in all the fields for specific terms such as
presto:

SELECT * FROM "blogs: +presto";

The query string syntax from Elasticsearch supports weighting different search terms
and other features suitable for a full-text search.

Summary
Another powerful feature, specific to users of Amazon Elasticsearch Service, is the
support for AWS Identity and Access Management. Find out more details about this
configuration as well as securing the connection to the Elasticsearch cluster with TLS
and other tips from the Presto documentation; see “Documentation” on page 13.

Using Presto with Elasticsearch allows you to analyze the rich data in your index with
the powerful tools around SQL support. You can write queries manually or hook up
rich analytical tools. This allows you to understand the data in the cluster better than
previously possible.

Similar advantages are available when you connect MongoDB to Presto, taking
advantage of the Presto MongoDB connector.

Query Federation in Presto
After reading about all the use cases for Presto in “Presto Use Cases” on page 7, and
learning about all the data sources and available connectors in Presto, you are now
ready to learn more about query federation in Presto. A federated query is a query
that accesses data in more than one data source.

122 | Chapter 7: Advanced Connector Examples

This query can be used to tie together the content and information from multiple
RDBMS databases, such as an enterprise backend application database running on
PostgreSQL with a web application database on MySQL. It could also be a data ware‐
house on PostgreSQL queried with data from the source also running in PostgreSQL
or elsewhere.

The much more powerful examples, however, arise when you combine queries from a
RDBMS with queries running against other nonrelational systems. Combine the data
from your data warehouse with information from your object storage, filled with data
from your web application at massive scale. Or relate the data to content in your key-
value store or your NoSQL database. Your object storage data lake can suddenly be
exposed with SQL, and the information can become the basis for better understand‐
ing your overall data.

Query federation can help you truly understand the data in those systems.

In the following example, you learn about the use case of joining data in distributed
storage with data in a relational database management system. You can find informa‐
tion about the necessary setup in “Flight Data Set” on page 16.

With this data, you can ask questions such as, “What is the average delay of airplanes
by year?” by using a SQL query:

SELECT avg(depdelayminutes) AS delay, year
FROM flights_orc
GROUP BY year
ORDER BY year DESC;

Another question is, “What are the best days of the week to fly out of Boston in the
month of February?”:

SELECT dayofweek, avg(depdelayminutes) AS delay
FROM flights_orc
WHERE month=2 AND origincityname LIKE '%Boston%'
GROUP BY dayofmonth
ORDER BY dayofweek;

Because the notion of multiple data sources and query federation is an integral part of
Presto, we encourage you to set up an environment and explore the data. These quer‐
ies serve as inspiration for you to create additional queries on your own.

We use the two example analytical queries on the airline data to demonstrate query
federation in Presto. The setup we provide uses data stored in S3 and accessed by
configuring Presto with the Hive connector. However, if you prefer, you can store the
data in HDFS, Azure Storage, or Google Cloud Storage and use the Hive connector to
query the data.

In this first example query, we want Presto to return the top 10 airline carriers with
the most flights from the data in HDFS:

Query Federation in Presto | 123

SELECT uniquecarrier, count(*) AS ct
FROM flights_orc
GROUP BY uniquecarrier
ORDER BY count(*) DESC
LIMIT 10;
 uniquecarrier | ct
---------------+----------
 WN | 24096231
 DL | 21598986
 AA | 18942178
 US | 16735486
 UA | 16377453
 NW | 10585760
 CO | 8888536
 OO | 7270911
 MQ | 6877396
 EV | 5391487
(10 rows)

While the preceding query provides us the results for the top 10 airline carriers with
the most flights, it requires you to understand the values of uniquecarrier. It would
be better if a more descriptive column provided the full airline carrier name instead
of the abbreviations. However, the airline data source we are querying from does not
contain such information. Perhaps if another data source with the information does
exist, we can combine the data source to return more comprehensible results.

Let’s look at another example. Here, we want Presto to return the top 10 airports that
had the most departures:

SELECT origin, count(*) AS ct
FROM flights_orc
GROUP BY origin
ORDER BY count(*) DESC
LIMIT 10;
 origin | ct
--------+---------
 ATL | 8867847
 ORD | 8756942
 DFW | 7601863
 LAX | 5575119
 DEN | 4936651
 PHX | 4725124
 IAH | 4118279
 DTW | 3862377
 SFO | 3825008
 LAS | 3640747
(10 rows)

As with the previous query, the results require some domain expertise. For example,
you need to understand that the origin column contains airport codes. The code is
meaningless to people with less expertise analyzing the results.

124 | Chapter 7: Advanced Connector Examples

Let’s enhance our results by combining them with additional data in a relational data‐
base. We use PostgreSQL in our examples, but similar steps are applicable for any
relational database.

As with the airline data, our GitHub repository includes the setup for creating and
loading tables in a relational database as well as configuring the Presto connector to
access it. We’ve chosen to configure Presto to query from a PostgreSQL database that
contains additional airline data. The table carrier in PostgreSQL provides a map‐
ping of the airline code to the more descriptive airline name. You can use this addi‐
tional data with our first example query.

Let’s take a look at table carrier in PostgreSQL:

SELECT * FROM carrier LIMIT 10;
 code | description
------+--
 02Q | Titan Airways
 04Q | Tradewind Aviation
 05Q | Comlux Aviation, AG
 06Q | Master Top Linhas Aereas Ltd.
 07Q | Flair Airlines Ltd.
 09Q | Swift Air, LLC
 0BQ | DCA
 0CQ | ACM AIR CHARTER GmbH
 0GQ | Inter Island Airways, d/b/a Inter Island Air
 0HQ | Polar Airlines de Mexico d/b/a Nova Air
(10 rows)

This table contains code column code along with a description column. Using this
information, we can use our first example query for the flights_orc table and mod‐
ify it to join with the data in the PostgreSQL carrier table:

SELECT f.uniquecarrier, c.description, count(*) AS ct
FROM hive.ontime.flights_orc f,
 postgresql.airline.carrier c
WHERE c.code = f.uniquecarrier
GROUP BY f.uniquecarrier, c.description
ORDER BY count(*) DESC
LIMIT 10;
 uniquecarrier | description | ct
---------------+----------------------------+----------
 WN | Southwest Airlines Co. | 24096231
 DL | Delta Air Lines Inc. | 21598986
 AA | American Airlines Inc. | 18942178
 US | US Airways Inc. | 16735486
 UA | United Air Lines Inc. | 16377453
 NW | Northwest Airlines Inc. | 10585760
 CO | Continental Air Lines Inc. | 8888536
 OO | SkyWest Airlines Inc. | 7270911
 MQ | Envoy Air | 6877396

Query Federation in Presto | 125

 EV | ExpressJet Airlines Inc. | 5391487
(10 rows)

Voilà! Now that we have written a single SQL query to federate data from S3 and
PostgreSQL, we’re able to provide more valuable results of the data to extract mean‐
ing. Instead of having to know or separately look up the airline codes, the descriptive
airline name is in the results.

In the query, you have to use fully qualified names when referencing the tables. When
utilizing the USE command to set the default catalog and schema, a nonqualified table
name is linked to that catalog and schema. However, anytime you need to query out‐
side for the catalog and schema, the table name must be qualified. Otherwise, Presto
tries to find it within the default catalog and schema, and returns an error. If you are
referring to a table within the default catalog and schema, it is not required to fully
qualify the table name. However, it’s recommended as best practice whenever refer‐
ring to data sources outside the default scope.

Next, let’s look at the table airport in PostgreSQL. This table is used as part of feder‐
ating our second example query:

SELECT code, name, city FROM airport LIMIT 10;
 code | name | city
------+--------------------------+----------------------
 01A | Afognak Lake Airport | Afognak Lake, AK
 03A | Bear Creek Mining Strip | Granite Mountain, AK
 04A | Lik Mining Camp | Lik, AK
 05A | Little Squaw Airport | Little Squaw, AK
 06A | Kizhuyak Bay | Kizhuyak, AK
 07A | Klawock Seaplane Base | Klawock, AK
 08A | Elizabeth Island Airport | Elizabeth Island, AK
 09A | Augustin Island | Homer, AK
 1B1 | Columbia County | Hudson, NY
 1G4 | Grand Canyon West | Peach Springs, AZ
(10 rows)

Looking at this data from PostgreSQL, you see that the code column can be used to
join with our second query on the flight_orc table. This allows you to use the addi‐
tional information in the airport table with the query to provide more details:

SELECT f.origin, c.name, c.city, count(*) AS ct
FROM hive.ontime.flights_orc f,
 postgresql.airline.airport c
WHERE c.code = f.origin
GROUP BY origin, c.name, c.city
ORDER BY count(*) DESC
LIMIT 10;
 origin | name | city | ct
--------+--+-----------------------+---------
 ATL | Hartsfield-Jackson Atlanta International | Atlanta, GA | 8867847
 ORD | Chicago OHare International | Chicago, IL | 8756942
 DFW | Dallas/Fort Worth International | Dallas/Fort Worth, TX | 7601863

126 | Chapter 7: Advanced Connector Examples

 LAX | Los Angeles International | Los Angeles, CA | 5575119
 DEN | Denver International | Denver, CO | 4936651
 PHX | Phoenix Sky Harbor International | Phoenix, AZ | 4725124
 IAH | George Bush Intercontinental/Houston | Houston, TX | 4118279
 DTW | Detroit Metro Wayne County | Detroit, MI | 3862377
 SFO | San Francisco International | San Francisco, CA | 3825008
 LAS | McCarran International | Las Vegas, NV | 3640747
(10 rows)

Presto! As with our first example, we can provide more meaningful information by
federating across two disparate data sources. Here, we are able to add in the name of
the airport instead of the user relying on airport codes that are hard to interpret.

With this quick example of query federation, you see that the combination of differ‐
ent data sources and the central querying in one location, in Presto, can provide tre‐
mendous improvements to your query results. Our example only enhanced the
appearance and readability of the results. However, in many cases, using richer, larger
data sets, the federation of queries, and combination of data from different sources
can result in complete new understanding of the data.

Now that we’ve gone through some examples of query federation from an end-user
perspective, let’s discuss the architecture of how this works. We build on top of some
of the concepts you learned about in Chapter 4 on the Presto architecture.

Presto is able to coordinate the hybrid execution of the query across the data sources
involved in the query. In the example earlier, we were querying between distributed
storage and PostgreSQL. For distributed storage via the Hive connector, Presto reads
the data files directly, whether it’s from HDFS, S3, Azure Blob Storage, etc. For a rela‐
tional database connector such as the PostgreSQL connector, Presto relies on Post‐
greSQL to perform as part of the execution. Let’s use our query from earlier, but to
make it more interesting, we add a new predicate that refers to a column in the Post‐
greSQL airport table:

SELECT f.origin, c.name, c.city, count(*) AS ct
FROM hive.ontime.flights_orc f,
 postgresql.airline.airport c
WHERE c.code = f.origin AND c.state = 'AK'
GROUP BY origin, c.name, c.city
ORDER BY count(*) DESC
LIMIT 10;

The logical query plan resembles something similar to Figure 7-5. You see the plan
consists of scanning both the flights_orc and airport tables. Both inputs are fed
into the join operator. But before the airport data is fed into the join, a filter is applied
because we want to look at the results only for airports in Alaska. After the join, the
aggregation and grouping operation is applied. And then finally the TopN operator
performs the ORDER BY and LIMIT combined.

Query Federation in Presto | 127

Figure 7-5. Logical query plan for a federated query

In order for Presto to retrieve the data from PostgreSQL, it sends a query via JDBC.
For example, in the naive approach, the following query is sent to PostgreSQL:

SELECT * FROM airline.airport;

However, Presto is smarter than this, and the Presto optimizer tries to reduce the
amount of data transferred between systems. In this example, Presto queries only the
columns it needs from the PostgreSQL table, as well as pushes down the predicate
into the SQL that is sent to PostgreSQL.

So now the query sent from Presto to PostgreSQL pushes more processing to
PostgreSQL:

SELECT code, city, name FROM airline.airport WHERE state = 'AK';

As the JDBC connector to PostgreSQL returns data to Presto, Presto continues pro‐
cessing the data for the part that is executed in the Presto query engine.

Some simpler queries such as SELECT * FROM public.airport are entirely pushed
down into the underlying data source, shown in Figure 7-6, such that the query exe‐
cution happens outside Presto, and Presto acts as a pass-through.

Currently, more complex SQL pushdown is not supported. For example, aggregations
or joins that involve only the RDBMS data could be pushed into the RDBMS to elimi‐
nate data transfer to Presto.

128 | Chapter 7: Advanced Connector Examples

Figure 7-6. Pushdown in a query plan

Extract, Transform, Load and Federated Queries
Extract, transform, load (ETL) is a term used to describe the technique of copying
data from data sources and landing it into another data source. Often there is a mid‐
dle step of transforming the data from the source in preparation for the destination.
This may include dropping columns, making calculations, filtering and cleaning up
data, joining in data, performing pre-aggregations, and other ways to prepare and
make it suitable for querying the destination.

Presto is not intended to be a full-fledged ETL tool comparable to a commercial solu‐
tion. However, it can assist by avoiding the need for ETL. Because Presto can query
from the data source, there may no longer be a need to move the data. Presto queries
the data where it lives to alleviate the complexity of managing the ETL process.

You may still desire to do some type of ETL transformations. Perhaps you want to
query on pre-aggregated data, or you don’t want to put more load on the underlying
system. By using the CREATE TABLE AS or INSERT SELECT constructs, you can move
data from one data source into another.

A large advantage of using Presto for ETL workloads and use cases is the support for
other data sources beyond relational databases.

Conclusion
You really have a good understanding about connectors in Presto now. It is time to
put them to good use. Configure your catalogs and get ready to learn more about
querying the data sources.

This brings us to our next topic, everything about SQL use in Presto. SQL knowledge
is crucial to your successful use of Presto, and we cover all you need to know in
Chapter 8 and Chapter 9.

Extract, Transform, Load and Federated Queries | 129

CHAPTER 8

Using SQL in Presto

After installing and running Presto, you first learned about the central feature of first-
class SQL support in Presto in “SQL with Presto” on page 36. Go back and check out
that content again if you need an overview or a reminder.

From Chapter 6 about connectors, you know that you can query a lot of data sources
with SQL in Presto.

In this chapter, you get to dive deep into the details of SQL support of Presto, includ‐
ing a set of data definition language (DDL) statements for creating and manipulating
database objects such as schemas, tables, columns, and views. You learn more about
the supported data types and SQL statements. In Chapter 9, you learn about opera‐
tors and functions for more advanced usage.

Overall, the goal of this chapter is not to serve as a reference guide for SQL but rather
demonstrate the SQL capabilities in Presto. For the latest and most complete infor‐
mation about SQL on Presto, you can refer to the official Presto documentation (see
“Documentation” on page 13).

You can take advantage of all SQL support by using the Presto CLI,
or any application using the JDBC driver or ODBC drivers, all dis‐
cussed in Chapter 3.

131

Impact from Connector
All operations performed in Presto depend on the connector to the data source and
its support for specific commands. For example, if the connector to the data source
does not support the DELETE statement, any usage results in a failure.

In addition, the connection typically uses a specific user or another authorization,
and specific restrictions continue to apply. For example, if the user does not have
access rights beyond reading the data, or even data only from a specific schema, other
operations such as deleting data or writing new data fails.

Presto Statements
Before you dive into querying data in Presto, it’s important to know what data is even
available, where, and in what data types. Presto statements allow you gather that type
of information and more. Presto statements query its system tables and information
for metadata about configured catalogs, schemas, and more. These statements work
in the same context as all SQL statements.

The FROM and FOR clauses in the statements need the input of a fully qualified table,
catalog, or schema, unless a default is set with USE.

The LIKE clause, which can be used to restrict the result, uses pattern matching syntax
like that of the SQL LIKE command.

Command sections in [] are optional. The following Presto statements are available:

SHOW CATALOGS [LIKE pattern]

List the available catalogs.

SHOW SCHEMAS [FROM catalog] [LIKE pattern]

List the schemas in a catalog.

SHOW TABLES [FROM schema] [LIKE pattern]

List the tables in a schema.

SHOW FUNCTIONS

Display a list of all available SQL functions.

SHOW COLUMNS FROM table or DESCRIBE table
List the columns in a table along with their data type and other attributes.

USE catalog.schema or USE schema
Update the session to use the specified catalog and schema as the default. If a cat‐
alog is not specified, the schema is resolved using the current catalog.

132 | Chapter 8: Using SQL in Presto

SHOW STATS FOR table_name

Show statistics like data size and counts for the data in a specific table.

EXPLAIN

Generate the query plan and detail the individual steps.

Let’s have a look at some examples that can come in handy in your own use:

SHOW SCHEMAS IN tpch LIKE '%3%';
 Schema

 sf300
 sf3000
 sf30000
(3 rows)

DESCRIBE tpch.tiny.nation;
 Column | Type | Extra | Comment
-----------+--------------+-------+--------
 nationkey | bigint | |
 name | varchar(25) | |
 regionkey | bigint | |
 comment | varchar(152) | |
(4 rows)

The EXPLAIN statement is actually a bit more powerful than indicated in the previous
list. Here is the full syntax:

EXPLAIN [(option [, ...])] <query>
 options: FORMAT { TEXT | GRAPHVIZ | JSON}
 TYPE { LOGICAL | DISTRIBUTED | IO | VALIDATE }

You can use the EXPLAIN statement to display the query plan:

EXPLAIN
SELECT name FROM tpch.tiny.region;
 Query Plan
--
 Output[name]
 │ Layout: [name:varchar(25)]
 │ Estimates: {rows: 5 (59B), cpu: 59, memory: 0B, network: 59B}
 └─ RemoteExchange[GATHER]
 │ Layout: [name:varchar(25)]
 │ Estimates: {rows: 5 (59B), cpu: 59, memory: 0B, network: 59B}
 └─ TableScan[tpch:region:sf0.01]
 Layout: [name:varchar(25)]
 Estimates: {rows: 5 (59B), cpu: 59, memory: 0B, network: 0B}
 name := tpch:name

Working with these plans is helpful for performance tuning and for better under‐
standing what Presto is going to do with your query. You can learn more about this in
Chapter 4 and Chapter 12.

Presto Statements | 133

A very simple use case of EXPLAIN is to check whether the syntax of your query is
even valid:

EXPLAIN (TYPE VALIDATE)
SELECT name FROM tpch.tiny.region;

Presto System Tables
The Presto system tables do not need to be configured with a catalog file. All schemas
and tables are automatically available with the system catalog.

You can query the schemas and tables to find out more about the running instance of
Presto by using the statements discussed in “Presto Statements” on page 132. The
available information includes data about the runtime, nodes, catalog, and more.
Inspecting the available information allows you to better understand and work with
Presto at runtime.

The Presto Web UI exposes information from the system tables in
a web-based user interface. Find out more details in “Monitoring
with the Presto Web UI” on page 239.

The system tables contain schemas:

SHOW SCHEMAS IN system;
 Schema

 information_schema
 jdbc
 metadata
 runtime
(4 rows)

For the purposes of query tuning, the tables system.runtime.queries and
system.runtime.tasks are the most useful:

DESCRIBE system.runtime.queries;
 Column | Type | Extra | Comment
------------------------------+----------------+-------+---------
 query_id | varchar | |
 state | varchar | |
 user | varchar | |
 source | varchar | |
 query | varchar | |
 resource_group_id | array(varchar) | |
 queued_time_ms | bigint | |
 analysis_time_ms | bigint | |
 distributed_planning_time_ms | bigint | |
 created | timestamp | |

134 | Chapter 8: Using SQL in Presto

 started | timestamp | |
 last_heartbeat | timestamp | |
 end | timestamp | |
(13 rows)

DESCRIBE system.runtime.tasks;
 Column | Type | Extra | Comment
-------------------------+-----------+-------+---------
 node_id | varchar | |
 task_id | varchar | |
 stage_id | varchar | |
 query_id | varchar | |
 state | varchar | |
 splits | bigint | |
 queued_splits | bigint | |
 running_splits | bigint | |
 completed_splits | bigint | |
 split_scheduled_time_ms | bigint | |
 split_cpu_time_ms | bigint | |
 split_blocked_time_ms | bigint | |
 raw_input_bytes | bigint | |
 raw_input_rows | bigint | |
 processed_input_bytes | bigint | |
 processed_input_rows | bigint | |
 output_bytes | bigint | |
 output_rows | bigint | |
 physical_written_bytes | bigint | |
 created | timestamp | |
 start | timestamp | |
 last_heartbeat | timestamp | |
 end | timestamp | |
(23 rows)

The preceding table descriptions show the underlying data explained in more detail
in “Monitoring with the Presto Web UI” on page 239. The system.runtime.queries
table provides information about current and past queries executed in Presto. The
system.runtime.tasks table provides the lower-level details for the tasks in Presto.
This is similar to the information output on the Query Details page of the Presto Web
UI.

Following are a few useful examples for queries from the system tables.

List nodes in Presto cluster:

SELECT * FROM system.runtime.nodes;

Show all failed queries:

SELECT * FROM system.runtime.queries WHERE state='FAILED';

Show all running queries, including their query_id:

SELECT * FROM system.runtime.queries WHERE state='RUNNING';

Presto System Tables | 135

The system tables also provide a mechanism to kill a running query:

CALL system.runtime.kill_query(query_id => 'queryId', message => 'Killed');

In addition to all the information about Presto at runtime, the cluster, the worker
nodes, and more, Presto connectors also have the ability to expose system data about
the connected data source. For example, the Hive connector discussed in “Hive Con‐
nector for Distributed Storage Data Sources” on page 93 can be configured as a con‐
nector in a datalake catalog. It automatically exposes data about Hive in the system
tables:

SHOW TABLES FROM datalake.system;

This information contains aspects such as used partitions.

Catalogs
A Presto catalog represents a data source configured with a catalog properties file
using a connector, as discussed in Chapter 6. Catalogs contain one or more schemas,
which provide a collection of tables.

For example, you can configure a PostgreSQL catalog to access a relational database
on PostgreSQL. Or you can configure a JMX catalog to provide access to JMX infor‐
mation via the JMX connector. Other examples of catalogs include a catalog using the
Hive connector to connect to an HDFS object storage data source. When you run a
SQL statement in Presto, you are running it against one or more catalogs.

It is possible to have multiple catalogs using the same connector. For example, you
can create two separate catalogs to expose two PostgreSQL databases running on the
same server.

When addressing a table in Presto, the fully qualified table name is always rooted in a
catalog. For example, a fully qualified table name of hive.test_data.test refers to
the test table in the test_data schema in the hive catalog.

You can see a list of available catalogs in your Presto server by accessing the system
data:

SHOW CATALOGS;
 Catalog

 blackhole
 hive
 jmx
 postgresql
 kafka
 system
(6 rows)

136 | Chapter 8: Using SQL in Presto

Catalogs, schemas, and table information are not stored by Presto; Presto does not
have its own catalog. It is the responsibility of the connector to provide this informa‐
tion to Presto. Typically, this is done by querying the catalog from the underlying
database or by another configuration in the connector. The connector handles this
and simply provides the information to Presto when requested.

Schemas
Within a catalog, Presto contains schemas. Schemas hold tables, views, and various
other objects and are a way to organize tables. Together, the catalog and schema
define a set of tables that can be queried.

When accessing a relational database such as MySQL with Presto, a schema translates
to the same concept in the target database. Other types of connectors may choose to
organize tables into schemas in a way that makes sense for the underlying data
source. The connector implementation determines how the schema is mapped in the
catalog. For example, a database in Hive is exposed as a schema in Presto for the Hive
connector.

Typically, schemas already exist when you configure a catalog. However, Presto also
allows creation and other manipulation of schemas.

Let’s look at the SQL statement to create a schema:

CREATE SCHEMA [IF NOT EXISTS] schema_name
[WITH (property_name = expression [, ...])]

The WITH clause can be used to associate properties with the schema. For example, for
the Hive connector, creating a schema actually creates a database in Hive. It is some‐
times desirable to override the default location for the database as specified by
hive.metastore.warehouse.dir:

CREATE SCHEMA hive.web
WITH (location = 's3://example-org/web/')

Refer to the latest Presto documentation for the list of schema properties, or query
the list in Presto:

SELECT * FROM system.metadata.schema_properties;
-[RECORD 1]-+------------------------------
catalog_name | hive
property_name | location
default_value |
type | varchar
description | Base file system location URI

Schemas | 137

You can change the name of an existing schema:

ALTER SCHEMA name RENAME TO new_name

Deleting a schema is also supported:

DROP SCHEMA [IF EXISTS] schema_name

Specify IF EXISTS when you do not want the statement to error if the schema does
not exist. Before you can successfully drop a schema, you need to drop the tables in it.
Some database systems support a CASCADE keyword that indicates the DROP statement
to drop everything within the object such as a schema. Presto does not support
CASCADE at this stage.

Information Schema
The information schema is part of the SQL standard and supported in Presto as a set
of views providing metadata about schemas, tables, columns, views, and other objects
in a catalog. The views are contained within a schema named information_schema.
Each Presto catalog has its own information_schema. Commands such as SHOW
TABLES, SHOW SCHEMA, and others are shorthand for the same information you can
retrieve from the information schema.

The information schema is essential for using third-party tools such as business intel‐
ligence tools. Many of these tools query the information schema so they know what
objects exist.

The information schema has eight total views. These are the same in each connector.
For some connectors that don’t support certain features (for example, roles), queries
to the information_schema in that connector may result in an unsupported error:

SHOW TABLES IN system.information_schema;
 Table

 applicable_roles
 columns
 enabled_roles
 roles
 schemata
 table_privileges
 tables
 views
(8 rows)

You can query the list of tables in the schema. Notice that the information schema
tables are returned as well:

138 | Chapter 8: Using SQL in Presto

SELECT * FROM hive.information_schema.tables;
 table_catalog | table_schema | table_name | table_type
 ---------------+--------------------+------------------+----------
 hive | web | nation | BASE TABLE
 hive | information_schema | enabled_roles | BASE TABLE
 hive | information_schema | roles | BASE TABLE
 hive | information_schema | columns | BASE TABLE
 hive | information_schema | tables | BASE TABLE
 hive | information_schema | views | BASE TABLE
 hive | information_schema | applicable_roles | BASE TABLE
 hive | information_schema | table_privileges | BASE TABLE
 hive | information_schema | schemata | BASE TABLE
(9 rows)

Additionally, you can view the columns for a particular table by leveraging the WHERE
clause in these queries:

SELECT table_catalog, table_schema, table_name, column_name
FROM hive.information_schema.columns
WHERE table_name = 'nation';
 table_catalog | table_schema | table_name | column_name
---------------+--------------------+------------------+-------------
 hive | web | nation | regionkey
 hive | web | nation | comment
 hive | web | nation | nationkey
 hive | web | nation | name
...

Tables
Now that you understand catalogs and schemas, let’s learn about table definitions in
Presto. A table is a set of unordered rows, which are organized into named columns
with specific data types. This is the same as in any relational database, in which the
table consists of rows, columns, and data types for those columns. The mapping from
source data to tables is defined by the catalog.

The connector implementation determines how a table is mapped into a schema. For
example, exposing PostgreSQL tables in Presto is straightforward because Post‐
greSQL natively supports SQL and the concepts of tables. However, it requires more
creativity to implement a connector to other systems, especially if they lack a strict
table concept by design. For example, the Apache Kafka connector exposes Kafka
topics as tables in Presto.

Tables are accessed in SQL queries by using a fully qualified name, such as catalog-
name.schema-name.table-name.

Tables | 139

Let’s take a look at CREATE TABLE for creating a table in Presto:

CREATE TABLE [IF NOT EXISTS]
table_name (
 { column_name data_type [COMMENT comment]
 [WITH (property_name = expression [, ...])]
 | LIKE existing_table_name [{ INCLUDING | EXCLUDING } PROPERTIES] }
 [, ...]
)
[COMMENT table_comment]
[WITH (property_name = expression [, ...])]

This general syntax should look familiar to you if you know SQL. In Presto, the
optional WITH clause has an important use. Other systems such as Hive have extended
the SQL language so that users can specify logic or data that cannot be otherwise
expressed in standard SQL. Following this approach violates the underlying philoso‐
phy of Presto to stay as close to the SQL standard as possible. It also makes support‐
ing many connectors unmanageable, and has therefore been replaced with having
table and column properties use the WITH clause.

Once you have created the table, you can use the INSERT INTO statement from stan‐
dard SQL.

For example, in the iris data set creation script, first a table is created; see “Iris Data
Set” on page 15. Then values are inserted directly from the query:

INSERT INTO iris (
 sepal_length_cm,
 sepal_width_cm,
 petal_length_cm,
 petal_width_cm,
 species)
VALUES
 (...

If the data is available via a separate query, you can use SELECT with INSERT. Say, for
example, you want to copy the data from a memory catalog to an existing table in
PostgreSQL:

INSERT INTO postgresql.flowers.iris
SELECT * FROM memory.default.iris;

The SELECT statement can include conditions and any other supported features for
the statement.

140 | Chapter 8: Using SQL in Presto

Table and Column Properties
Let’s learn how the WITH clause is used by creating a table by using the Hive connector
from “Hive Connector for Distributed Storage Data Sources” on page 93 (see
Table 8-1).

Table 8-1. Table properties supported by the Hive connector

Property name Property description

external_location The filesystem location for an external Hive table; e.g., on S3 or Azure Blob Storage

format The file storage format for the underlying data such as ORC, AVRO, PARQUET, etc.

Using the properties from Table 8-1, let’s create a table in Hive with Presto that is
identical to the way the table is created in Hive.

Let’s start with this Hive syntax:

CREATE EXTERNAL TABLE page_views(
 view_time INT,
 user_id BIGINT,
 page_url STRING,
 view_date DATE,
 country STRING)
 STORED AS ORC
 LOCATION 's3://example-org/web/page_views/';

Compare this to using SQL in Presto:

CREATE TABLE hive.web.page_views(
 view_time timestamp,
 user_id BIGINT,
 page_url VARCHAR,
 view_date DATE,
 country VARCHAR
)
WITH (
 format = 'ORC',
 external_location = 's3://example-org/web/page_views'
);

As you can see, the Hive DDL has extended the SQL standard. Presto, however, uses
properties for the same purpose and therefore adheres to the SQL standard.

You can query the system metadata of Presto to list the available table properties:

SELECT * FROM system.metadata.table_properties;

To list the available column properties, you can run the following query:

SELECT * FROM system.metadata.column_properties;

Tables | 141

Copying an Existing Table
You can create a new table by using an existing table as a template. The LIKE clause
creates a table with the same column definition as an existing table. Table and column
properties are not copied by default. Since the properties are important in Presto, we
suggest copying them as well by using INCLUDING PROPERTIES in the syntax. This fea‐
ture is useful when performing some type of transformation of the data by using
Presto:

CREATE TABLE hive.web.page_view_bucketed(
 comment VARCHAR,
 LIKE hive.web.page_views INCLUDING PROPERTIES
)
WITH (
 bucketed_by = ARRAY['user_id'],
 bucket_count = 50
)

Use the SHOW statement to inspect the newly created table definition:

SHOW CREATE TABLE hive.web.page_view_bucketed;
 Create Table
 --
 CREATE TABLE hive.web.page_view_bucketed (
 comment varchar,
 view_time timestamp,
 user_id bigint,
 page_url varchar,
 view_date date,
 country varchar
)
 WITH (
 bucket_count = 50,
 bucketed_by = ARRAY['user_id'],
 format = 'ORC',
 partitioned_by = ARRAY['view_date','country'],
 sorted_by = ARRAY[]
)
(1 row)

You can compare this to the original table you copied:

SHOW CREATE TABLE hive.web2.page_views;
 Create Table
--
 CREATE TABLE hive.web.page_views (
 view_time timestamp,
 user_id bigint,
 page_url varchar,
 view_date date,
 country varchar
)

142 | Chapter 8: Using SQL in Presto

 WITH (
 format = 'ORC',
 partitioned_by = ARRAY['view_date','country']
)
(1 row)

Creating a New Table from Query Results
The CREATE TABLE AS (CTAS) statement can be used to create a new table that con‐
tains the results of a SELECT query. The column definitions for the table are created
dynamically by looking at the result column data from the query. The statement can
be used for creating temporary tables, or as part of a process to create transformed
tables:

CREATE TABLE [IF NOT EXISTS] table_name [(column_alias, ...)]
[COMMENT table_comment]
[WITH (property_name = expression [, ...])]
AS query
[WITH [NO] DATA]

By default, the new table is populated with the result data from the query.

CTAS can be used for transforming tables and data. For example, you can load un-
partitioned data in TEXTFILE format into a new partitioned table with data in ORC
format:

CREATE TABLE hive.web.page_views_orc_part
WITH (
 format = 'ORC',
 partitioned_by = ARRAY['view_date','country']
)
AS
SELECT *
FROM hive.web.page_view_text

The next example shows creating a table from the resulting sessionization query over
the page_views table:

CREATE TABLE hive.web.user_sessions
AS
SELECT user_id,
 view_time,
 sum(session_boundary)
 OVER (
 PARTITION BY user_id
 ORDER BY view_time) AS session_id
FROM (SELECT user_id,
 view_time,
 CASE
 WHEN to_unixtime(view_time) -
 lag(to_unixtime(view_time), 1)
 OVER(

Tables | 143

 PARTITION BY user_id
 ORDER BY view_time) >= 30
 THEN 1
 ELSE 0
 END AS session_boundary
 FROM page_views) T
ORDER BY user_id,
 session_id

Occasionally, you need to create a copy of a table definition only.
You can do this by using CTAS and adding a WITH NO DATA clause
at the end of the statement.

Modifying a Table
The ALTER TABLE statement can perform actions such as renaming a table, adding a
column, dropping a column, or renaming a column in a table:

ALTER TABLE name RENAME TO new_name

ALTER TABLE name ADD COLUMN column_name data_type
 [COMMENT comment] [WITH (property_name = expression [, ...])]

ALTER TABLE name DROP COLUMN column_name

ALTER TABLE name RENAME COLUMN column_name TO new_column_name

It is important to note that depending on the connector and authorization model for
the connector, these operations may not be allowed when using the default behavior.
For example, the Hive connector restricts these operations by default.

Deleting a Table
Using the DROP TABLE statement, you can delete a table:

DROP TABLE [IF EXISTS] table_name

Depending on the connector implementation, this may or may not drop the underly‐
ing data. You should refer to the connector documentation for further explanation.

Table Limitations from Connectors
So far in this chapter, we’ve gone over the various SQL statements Presto supports.
However, it does not mean that every data source in Presto supports all statements
and syntax possibilities or provides the same semantics.

The connector implementation and the capabilities and semantics of the underlying
data source have a large impact on the possibilities.

144 | Chapter 8: Using SQL in Presto

If you try a statement or operation that is not supported by a particular connector,
Presto returns an error. For example, the system schema and tables are used to expose
information about the Presto system. It does not support table creation, since that
simply does not make sense for internal system data tables. If you attempt to create a
table anyway, you receive an error:

CREATE TABLE system.runtime.foo(a int);
Query failed: This connector does not support creating tables

Views
Views are virtual tables based on the result set of a SQL query. They are well sup‐
ported in many RDBMSs. However, Presto does not have any support for creating,
editing, or removing views.

Presto treats views from an underlying data source like tables. This allows you to use
views for some very useful purposes:

• Exposing data from multiple tables in an easier consumable view
• Restricting data available with views that have limited columns and/or rows
• Providing processed, transformed data conveniently

Using views automatically requires the underlying data source to take full ownership
of the data in the view, and therefore the processing to create the view and keep it up-
to-date. As a result, using views can enable you to push the processing of a query to
the RDBMS in a few steps:

1. Discover a performance problem on a SQL query on table data running in
Presto.

2. Troubleshoot the system by looking at the EXPLAIN plan of the execution.
3. Realize that a specific subquery causes a bottleneck.
4. Create a view that preprocesses the subquery.
5. Use that view in your SQL query, replacing a table.
6. Enjoy the performance benefits.

Views | 145

Session Information and Configuration
When using Presto, all configuration is maintained in a user-specific context called a
session. This session contains key-value pairs that signify the configuration of numer‐
ous aspects used for the current interaction of the user with Presto.

You can use SQL commands to interact with that information. For starters, you can
just view what the current configuration is, and even use LIKE patterns to narrow
down the options you are interested in:

SHOW SESSION LIKE 'query%';

This query returns information about the properties query_max_cpu_time,
query_max_execution_time, query_max_run_time, and query_priority, including
the current value, the default value, the data type (integer, boolean, or varchar), and
a brief description of the property.

The list of properties is long and includes many configuration options for Presto
behavior, such as memory and CPU limits for queries, query planning algorithms,
and cost-based optimizer usage.

As a user, you can change these properties, which affects the performance for the cur‐
rent user session. You can set specific options for specific queries or workloads, or test
them for global rollout into the main file-based Presto configuration in config.prop
erties used by the cluster.

For example, you can activate the experimental algorithm to use collocated joins for
query planning:

SET SESSION collocated_join = true;
SET SESSION

You can confirm that the setting worked:

SHOW SESSION LIKE 'colocated_join';
 Name | Value | Default ...
----------------+-------+---------
 colocated_join | true | false ...

To undo the setting and get back to the default value, you can reset the session
property:

SET SESSION colocated_join;
RESET SESSION

146 | Chapter 8: Using SQL in Presto

Data Types
Presto supports most of the data types described by the SQL standard, which are also
supported by many relational databases. In this section, we discuss data type support
in Presto.

Not all Presto connectors support all Presto data types. And Presto may not support
all the types from the underlying data source either. The way the data types are
translated to and from the underlying data source and into Presto depends on
the connector implementation. The underlying data sources may not support the
same type, or the same type may be named differently. For example, the MySQL con‐
nector maps the Presto REAL type to a MySQL FLOAT.

In some cases, data types need to be converted. Some connectors convert an unsup‐
ported type into a Presto VARCHAR—basically, a string representation of the source
data—or ignore reading the column entirely. Specific details are available in the con‐
nector documentation and source code.

Back to the long list of well-supported data types. Tables 8-2 through 8-6 describe the
data types in Presto and provide example data where applicable.

Table 8-2. Boolean data type

Type Description Example

BOOLEAN Boolean value of true or false True

Table 8-3. Integer data type

Type Description Example

TINYINT 8-bit signed integer, minimum value of -27, maximum value of 27 - 1 42

SMALLINT 16-bit signed integer, minimum value of -215, maximum value of 215 - 1 42

INTEGER, INT 32-bit signed integer, minimum value of -231, maximum value of 231 - 1 42

BIGINT 64-bit signed integer, minimum value of -263, maximum value of 263 - 1 42

Table 8-4. Floating-point data types

Type Description Example

REAL 32-bit floating-point, follows the IEEE Standard 754 for Binary Floating-Point Arithmetic 2.71828

DOUBLE 64-bit floating-point, follows the IEEE Standard 754 for Binary Floating-Point Arithmetic 2.71828

Table 8-5. Fixed-precision data types

Type Description Example

DECIMAL Fixed-precision decimal number 123456.7890

Data Types | 147

Table 8-6. String data types

Type Description Example

VARCHAR or
VARCHAR(n)

Variable-length string of characters. There is an optional maximum length when
defined as VARCHAR(n), where n is a positive integer representing the maximum
number of characters.

“Hello World”

CHAR CHAR(n) A fixed-length string of characters. There is an optional length when defined as
CHAR(n), where n is a positive integer defining the length of the character. CHAR is
equivalent to CHAR(1).

“Hello World “

Unlike VARCHAR, CHAR always allocates n characters. Here are some characteristics and
errors you should be aware of:

• If you are casting a character string with less than n characters, trailing spaces are
added.

• If you are casting a character string with more than n characters, it is truncated
without error.

• If you insert a VARCHAR or CHAR longer than defined in the column into a table, an
error occurs.

• If you insert a CHAR that is shorter than as defined in the column into a table, the
value is space padded to match the defined length.

• If you insert a VARCHAR that is shorter than as defined in the column into a table,
the exact length of the string is stored. Leading and trailing spaces are included
when comparing CHAR values.

The following examples highlight these behaviors:

SELECT length(cast('hello world' AS char(100)));
 _col0

 100
(1 row)

SELECT cast('hello world' AS char(15)) || '~';
 _col0

 hello world ~
(1 row)

SELECT cast('hello world' AS char(5));
 _col0

 hello
(1 row)

SELECT length(cast('hello world' AS varchar(15)));
 _col0

148 | Chapter 8: Using SQL in Presto

 11
(1 row)

SELECT cast('hello world' AS varchar(15)) || '~';
 _col0

 hello world~
(1 row)

SELECT cast('hello world' as char(15)) = cast('hello world' as char(14));
 _col0

 false
(1 row)

SELECT cast('hello world' as varchar(15)) = cast('hello world' as varchar(14));
 _col0

 true
(1 row)

CREATE TABLE varchars(col varchar(5));
CREATE TABLE

INSERT INTO into varchars values('1234');
INSERT: 1 row

INSERT INTO varchars values('123456');
Query failed: Insert query has mismatched column types:
Table: [varchar(5)], Query: [varchar(6)]

Collection Data Types
As data becomes increasingly vast and complex, it is sometimes stored in more com‐
plex data types such as arrays and maps. Many RDBMS systems, and specifically also
some NoSQL systems, support complex data types natively. Presto supports some of
these collection data types, listed in Table 8-7. It also provides support for the UNNEST
operation detailed in “Unnesting Complex Data Types” on page 182.

Table 8-7. Collection data types

Collection data type Example

ARRAY ARRAY[apples, oranges, pears]

MAP MAP(ARRAY[a, b, c], ARRAY[1, 2, 3])

JSON {"a”:1,"b”:2,"c”:3}

ROW ROW(1, 2, 3)

Data Types | 149

Temporal Data Types
Table 8-8 describes temporal data types, or data types related to dates and time.

Table 8-8. Temporal data types

Type Description Example

DATE A calendar date representing the year, month, and day DATE ’1983-10-19’

TIME A time of day representing hour, minute, second, and millisecond. TIME ’02:56:15.123’

TIME WITH TIMEZONE A time of day representing hour, minute, second, and millisecond,
including a time zone.

TIMESTAMP A date and time.

TIMESTAMP WITH
TIMEZONE

A date and time with a time zone.

INTERVAL YEAR TO
MONTH

An interval span of years and months. INTERVAL ’1-2’ YEAR TO
MONTH

INTERVAL DAY TO
SECOND

An interval span of days, hours, minutes, seconds, and milliseconds. INTERVAL ’5’ DAY to
SECOND

In Presto, TIMESTAMP is represented as a Java Instant type representing the amount
of time before or after the Java epoch. This should be transparent to the end user as
values are parsed and displayed in a different format.

For types that do not include time-zone information, the values are parsed and dis‐
played according to the Presto session time zone. For types that include the time-
zone information, the values are parsed and displayed using the time zone.

String literals can be parsed by Presto into a TIMESTAMP, TIMESTAMP WITH TIMEZONE,
TIME, TIME WITH TIMEZONE, or DATE. Tables 8-9 through 8-11 describe the formats
accepted for parsing. If you want to use ISO 8601, you can use the from
_iso8601_timestamp or from_iso8601_date functions.

Table 8-9. Supported string literals for parsing to timestamp data types

TIMESTAMP TIMESTAMP WITH TIMEZONE

yyyy-M-d yyyy-M-d ZZZ

yyyy-M-d H:m yyyy-M-d H:m ZZZ

yyyy-M-d H:m:s yyyy-M-d H:m:s ZZZ

yyyy-M-d H:m:s.SSS yyyy-M-d H:m:s.SSS ZZZ

150 | Chapter 8: Using SQL in Presto

Table 8-10. Supported string literals for parsing to time data types

TIME TIMESTAMP WITH TIMEZONE

H:m H:m ZZZ

H:m:s H:m:s ZZZ

H:m:s.SSS H:m:s.SSS ZZZ

Table 8-11. Supported string literals for parsing to date data type

DATE

YYYY-MM-DD

When printing the output for TIMESTAMP, TIMESTAMP WITH TIMEZONE, TIME, TIME
WITH TIMEZONE, or DATE, Presto uses the output formats in Table 8-12. If you want to
output in strict ISO 8601 format, you can use the to_iso8601 function.

Table 8-12. Temporal output formats

Data type Format

TIMESTAMP yyyy-MM-dd HH:mm:ss.SSS ZZZ

TIMESTAMP WITH TIMEZONE yyyy-MM-dd HH:mm:ss.SSS ZZZ

TIME yyyy-MM-dd HH:mm:ss.SSS ZZZ

TIME WITH TIMEZONE yyyy-MM-dd HH:mm:ss.SSS ZZZ

DATE YYYY-MM-DD

Time Zones

The time zone adds important additional temporal information. Presto supports TIME
WITH TIMEZONE, but it is often best to use time zones with a DATE or TIMESTAMP. This
enables accounting of daylight saving time with the DATE format.

Following are some sample time-zone strings:

• America/New_York

• America/Los_Angeles

• Europe/Warsaw

• +08:00

• -10:00

Data Types | 151

Let’s look at some examples:

SELECT TIME '02:56:15 UTC';
 _col0

 02:56:15.000 UTC
(1 row)

SELECT TIME '02:56:15 UTC' AT TIME ZONE 'America/Los_Angeles';
 _col0

 18:56:15.000 America/Los_Angeles

SELECT TIME '02:56:15 UTC' AT TIME ZONE '-08:00';
 _col0

 18:56:15.000 -08:00
(1 row)

SELECT TIMESTAMP '1983-10-19 07:30:05.123';
 _col0

 1983-10-19 07:30:05.123
(1 row)

SELECT TIMESTAMP '1983-10-19 07:30:05.123 America/New_York' AT TIME ZONE 'UTC';
 _col0

 1983-10-19 11:30:05.123 UTC
(1 row)

Intervals

The data type INTERVAL can be either YEAR TO MONTH or DAY TO SECOND, as shown in
Tables 8-13 and 8-14.

Table 8-13. Years-to-months intervals

YEAR TO MONTH

INTERVAL '<years>-<months>' YEAR TO MONTH

INTERVAL '<years>' YEAR TO MONTH

INTERVAL '<years>' YEAR

INTERVAL '<months>' MONTH

152 | Chapter 8: Using SQL in Presto

Table 8-14. Days-to-seconds intervals

DAY TO SECOND

INTERVAL '<days> <time>' DAY TO SECOND

INTERVAL '<days>' DAY TO SECOND

INTERVAL '<days>' DAY

INTERVAL '<hours>' HOUR

INTERVAL '<minutes>' MINUTE

INTERVAL '<seconds>' SECOND

The following examples highlight some behaviors we’ve described:

SELECT INTERVAL '1-2' YEAR TO MONTH;
 _col0

 1-2
(1 row)

SELECT INTERVAL '4' MONTH;
 _col0

 0-4
(1 row)

SELECT INTERVAL '4-1' DAY TO SECOND;
Query xyz failed: Invalid INTERVAL DAY TO SECOND value: 4-1

SELECT INTERVAL '4' DAY TO SECOND;
 _col0

 4 00:00:00.000
(1 row)

SELECT INTERVAL '4 01:03:05.44' DAY TO SECOND;
 _col0

 4 01:03:05.440
(1 row)

SELECT INTERVAL '05.44' SECOND;
 _col0

 0 00:00:05.440
(1 row)

Data Types | 153

Type Casting
Sometimes it is necessary to explicitly change a value or literal to a different data type.
This is called type casting and is performed by the CAST function:

CAST(value AS type)

Now let’s say you need to compare a DATE to a literal string:

SELECT *
FROM hive.web.page_views
WHERE view_date > '2019-01-01';
Query failed: line 1:42: '>' cannot be applied to date, varchar(10)

This query fails because Presto does not have a greater than (>) comparison operator
that knows how to compare a date and a string literal. However, it has a comparison
function that knows how to compare two dates. Therefore, we need to use the CAST
function to coerce one of the types. In this example, it makes the most sense to con‐
vert the string to a date:

SELECT *
FROM hive.web.page_views
WHERE view_date > CAST('2019-01-01' as DATE);
 view_time | user_id | page_url | view_data | country
 ------------------------+---------+----------+------------+---------
 2019-01-26 20:40:15.477 | 2 | http:// | 2019-01-26 | US
 2019-01-26 20:41:01.243 | 3 | http:// | 2019-01-26 | US
...

Presto provides another conversion function, try_cast. It attempts to perform the
type coercion, but unlike CAST, which returns an error if the cast fails, try_cast
returns a null value. This can be useful when an error is not necessary:

try_cast(value AS type)

Let’s take, for example, coercing a character literal to a number type:

SELECT cast('1' AS integer);
 _col0

 1
(1 row)

SELECT cast('a' as integer);
Query failed: Cannot cast 'a' to INT

SELECT try_cast('a' as integer);
 _col0

 NULL
(1 row)

154 | Chapter 8: Using SQL in Presto

SELECT Statement Basics
The SELECT statement is of critical importance, as it allows you to return data from
one or multiple tables in a table format, at minimum collapsing down to one row or
potentially just one value.

SELECT queries with Presto have the additional complexity to include tables from dif‐
ferent catalogs and schemas—completely different data sources. You learned about
this in “Query Federation in Presto” on page 122.

Now you are going to dive into the details and learn about all the power available.
Let’s start with a syntax overview:

[WITH with_query [, ...]]
SELECT [ALL | DISTINCT] select_expr [, ...]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY [ALL | DISTINCT] grouping_element [, ...]]
[HAVING condition]
[{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
[ORDER BY expression [ASC | DESC] [, ...]]
[LIMIT [count | ALL]]

select_expr represents the data returned by the query in the form of a table column,
a derived table column, a constant, or a general expression in zero, one, or more
rows. A general expression can include functions, operators, columns, and constants.
You can run a query with just a SELECT select_expr, for testing, but its usefulness
beyond that is limited:

SELECT 1, 1+1, upper('lower');
 _col0 | _col1 | _col2
-------+-------+------
 1 | 2 | LOWER
(1 row)

SELECT select_expr [, ...] FROM from_item is the most basic form of the query.
It allows you to retrieve all data from an underlying table, or only a selection of col‐
umns. It also allows you to calculate expressions on the underlying data.

Say we have two tables, also known as relations, nation and customer. The examples
are taken from the TPC-H, discussed in “Presto TPC-H and TPC-DS Connectors” on
page 92. For brevity, the example tables were truncated to have just a few rows and
columns each. We use this data throughout the chapter over multiple examples of
select queries.

SELECT Statement Basics | 155

You can return select columns and data from the nation table in the sf1 schema:

SELECT nationkey, name, regionkey
FROM tpch.sf1.nation;
 nationkey | name | regionkey
-----------+----------------+-----------
 0 | ALGERIA | 0
 1 | ARGENTINA | 1
 2 | BRAZIL | 1
 3 | CANADA | 1
 4 | EGYPT | 4
 5 | ETHIOPIA | 0
...

And now some sample data from the customer table.

SELECT custkey, nationkey, phone, acctbal, mktsegment
FROM tpch.tiny.customer;
 custkey | nationkey | phone | acctbal | mktsegment
---------+-----------+-----------------+---------+------------
 751 | 0 | 10-658-550-2257 | 2130.98 | FURNITURE
 752 | 8 | 18-924-993-6038 | 8363.66 | MACHINERY
 753 | 17 | 27-817-126-3646 | 8114.44 | HOUSEHOLD
 754 | 0 | 10-646-595-5871 | -566.86 | BUILDING
 755 | 16 | 26-395-247-2207 | 7631.94 | HOUSEHOLD
 756 | 14 | 24-267-298-7503 | 8116.99 | AUTOMOBILE
 757 | 3 | 13-704-408-2991 | 9334.82 | AUTOMOBILE
 758 | 17 | 27-175-799-9168 | 6352.14 | HOUSEHOLD
...

Beyond just returning select data, we can transform data with functions and return
the result:

SELECT acctbal, round(acctbal) FROM tpch.sf1.customer;
 acctbal | _col1
---------+--------
 7470.96 | 7471.0
 8462.17 | 8462.0
 2757.45 | 2757.0
 -588.38 | -588.0
 9091.82 | 9092.0
 3288.42 | 3288.0
 2514.15 | 2514.0
 2259.38 | 2259.0
 -716.1 | -716.0
 7462.99 | 7463.0
(10 rows)

156 | Chapter 8: Using SQL in Presto

WHERE Clause
The WHERE clause is used as a filter in SELECT queries. It consists of a condition that
evaluates to TRUE, FALSE, or UNKNOWN. During query execution, the condition is evalu‐
ated for each row. If the evaluation does not equal TRUE, the row is skipped and omit‐
ted from the result set. Otherwise, the row is emitted and sent back as part of the
results to the user or for further processing.

The WHERE clause condition consists of one or more Boolean expressions connected
by conjunctive ANDs and disjunctive ORs:

SELECT custkey, acctbal
FROM tpch.sf1.customer WHERE acctbal < 0;
 custkey | acctbal
---------+---------
 75016 | -735.89
 75027 | -399.78
 75028 | -222.92
 75034 | -679.38
 75037 | -660.07
...

SELECT custkey, acctbal FROM tpch.sf1.customer
WHERE acctbal > 0 AND acctbal < 500;
 custkey | acctbal
---------+---------
 75011 | 165.71
 75012 | 41.65
 75021 | 176.2
 75022 | 348.24
 75026 | 78.64
 75084 | 18.68
 75107 | 314.88
...

The WHERE clause condition is important because it is used for several query optimiza‐
tions. In “Query Planning” on page 53, you can learn more about the query planning
and optimizations. When querying multiple tables, you can connect them via condi‐
tions in the WHERE clause. Presto uses this information to determine efficient query
execution plans.

WHERE Clause | 157

GROUP BY and HAVING Clauses
The GROUP BY and HAVING clauses are common to use in analytical queries. GROUP BY
is used to combine rows of the same value into a single row:

SELECT mktsegment
FROM tpch.sf1.customer
GROUP BY mktsegment;
 mktsegment

 MACHINERY
 AUTOMOBILE
 HOUSEHOLD
 BUILDING
 FURNITURE
(5 rows)

For analytical queries in Presto, GROUP BY is often combined with aggregation func‐
tions. These functions are computed from the data in the rows that make up a single
group. The following query calculates the total account balance of all customers,
breaking it down by market segment.

SELECT mktsegment, round(sum(acctbal) / 1000000, 3) AS acctbal_millions
FROM tpch.sf1.customer
GROUP BY mktsegment;
 mktsegment | acctbal_millions
------------+------------------
 MACHINERY | 134.439
 AUTOMOBILE | 133.867
 BUILDING | 135.889
 FURNITURE | 134.259
 HOUSEHOLD | 135.873

Aggregation functions can also be used, even if the GROUP BY clause is not used. In
this case, the entire relation serves as input to the aggregation function, so we can cal‐
culate the overall account balance:

SELECT round(sum(acctbal) / 1000000, 3) AS acctbal_millions
FROM tpch.sf1.customer;
 acctbal_millions

 674.327

The HAVING clause is similar to the WHERE clause. It is evaluated for each row, and rows
are emitted only if the condition evaluates to TRUE. The HAVING clause is evaluated
after the GROUP BY and operated on the grouped rows. The WHERE clause is
evaluated before the GROUP BY and evaluated on the individual rows.

158 | Chapter 8: Using SQL in Presto

Here is the full query:

SELECT mktsegment,
 round(sum(acctbal), 1) AS acctbal_per_mktsegment
FROM tpch.tiny.customer
GROUP BY mktsegment
HAVING round(sum(acctbal), 1) > 5283.0;
 mktsegment | acctbal_per_mktsegment
------------+------------------------
 BUILDING | 1444587.8
 HOUSEHOLD | 1279340.7
 AUTOMOBILE | 1395695.7
 FURNITURE | 1265282.8
 MACHINERY | 1296958.6
(5 rows)

And here are the filtered results using the condition on grouped data:

SELECT mktsegment,
 round(sum(acctbal), 1) AS acctbal_per_mktsegment
FROM tpch.tiny.customer
GROUP BY mktsegment
HAVING round(sum(acctbal), 1) > 1300000;
 mktsegment | acctbal_per_mktsegment
------------+------------------------
 AUTOMOBILE | 1395695.7
 BUILDING | 1444587.8
(2 rows)

ORDER BY and LIMIT Clauses
The ORDER BY clause contains expressions that are used to order the results. The
clause, which can contain multiple expressions, is evaluated from left to right. Multi‐
ple expressions are typically used to break ties when the left expression evaluates to
the same value for more than one row. The expressions can indicate the sort order to
be ascending (e.g., A–Z, 1–100) or descending (e.g., Z–A, 100–1).

The LIMIT clause is used to return only the specified number of rows. Together with
the ORDER BY clause, LIMIT can be used to find the first N results of an ordered set:

SELECT mktsegment,
 round(sum(acctbal), 2) AS acctbal_per_mktsegment
FROM tpch.sf1.customer
GROUP BY mktsegment
HAVING sum(acctbal) > 0
ORDER BY acctbal_per_mktsegment DESC
LIMIT 1;
 mktsegment | acctbal_per_mktsegment
------------+------------------------
 MACHINERY | 19851.2
(1 row)

ORDER BY and LIMIT Clauses | 159

Often Presto is able to optimize executing ORDER BY and LIMIT as a combined step
rather than separately.

LIMIT can be used without the ORDER BY clause, but most often they are used
together. The reason is that the SQL standard, and therefore also Presto, does not
guarantee any order of the results. This means that using LIMIT without an ORDER BY
clause can return different nondeterministic results with each run of the same query.
This becomes more apparent in a distributed system such as Presto.

JOIN Statements
SQL allows you to combine data from different tables by using JOIN statements.
Presto supports the SQL standard joins such as INNER JOIN, LEFT OUTER JOIN, RIGHT
OUTER JOIN, FULL OUTER JOIN, and CROSS JOIN. A full exploration of JOIN state‐
ments is beyond the scope of this book but is covered in many others.

Let’s focus on a few examples and explore specific details relevant to Presto:

SELECT custkey, mktsegment, nation.name AS nation
FROM tpch.tiny.nation JOIN tpch.tiny.customer
ON nation.nationkey = customer.nationkey;
 custkey | mktsegment | nation
---------+------------+-----------
 108 | BUILDING | ETHIOPIA
 101 | MACHINERY | BRAZIL
 106 | MACHINERY | ARGENTINA
(3 rows)

Presto also has an implicit cross join: a list of tables is separated by commas, and the
join is defined with conditions in the WHERE clause:

SELECT custkey, mktsegment, nation.name AS nation
FROM tpch.tiny.nation, tpch.tiny.customer
WHERE nation.nationkey = customer.nationkey;
 custkey | mktsegment | name
---------+------------+-----------
 108 | BUILDING | ETHIOPIA
 106 | MACHINERY | ARGENTINA
 101 | MACHINERY | BRAZIL

Joins can be one of the most expensive operations of query processing. When multi‐
ple joins are in a query, the joins can be processed by different permutations. The
Q09 query from the TPCH benchmark is a good example of such a complex query:

SELECT
 nation,
 o_year,
 sum(amount) AS sum_profit
FROM (
 SELECT

160 | Chapter 8: Using SQL in Presto

 N.name AS nation,
 extract(YEAR FROM o.orderdate)AS o_year,
 l.extendedprice * (1 - l.discount) - ps.supplycost * l.quantity AS amount
 FROM
 part AS p,
 supplier AS s,
 lineitem AS l,
 partsupp AS ps,
 orders AS o,
 nation AS n
 WHERE
 s.suppkey = l.suppkey
 AND ps.suppkey = l.suppkey
 AND ps.partkey = l.partkey
 AND p.partkey = l.partkey
 AND o.orderkey = l.orderkey
 AND s.nationkey = n.nationkey
 AND p.name LIKE '%green%'
) AS profit
GROUP BY
 nation,
 o_year
ORDER BY
 nation,
 o_year DESC;

UNION, INTERSECT, and EXCEPT Clauses
UNION, INTERSECT, and EXCEPT are known as set operations in SQL. They are used to
combine the data from multiple SQL statements into a single result.

While you can use joins and conditions to get the same semantics, it is often easier to
use set operations. Presto executes them more efficiently than equivalent SQL.

As you learn the semantics of the set operations, it’s usually easier to start with basic
integers. You can start with UNION, which combines all values and removes duplicates:

SELECT * FROM (VALUES 1, 2)
UNION
SELECT * FROM (VALUES 2, 3);
 _col0

 2
 1
 3
(3 rows)

UNION ALL leaves any duplicates in place:

SELECT * FROM (VALUES 1, 2)
UNION ALL
SELECT * FROM (VALUES 2, 3);

UNION, INTERSECT, and EXCEPT Clauses | 161

 _col0

 1
 2
 2
 3
(4 rows)

INTERSECT returns all elements found in both queries as a result:

SELECT * FROM (VALUES 1, 2)
INTERSECT
SELECT * FROM (VALUES 2, 3);
 _col0

 2
(1 row)

EXCEPT returns elements from the first query after removing all elements found in the
second query:

SELECT * FROM (VALUES 1, 2)
EXCEPT
SELECT * FROM (VALUES 2, 3);
 _col0

 1
(1 row)

Each set operator supports use of an optional qualifier, ALL or DISTINCT. The DIS
TINCT keyword is the default and need not be specified. The ALL keyword is used as a
way to preserve duplicates. Currently, ALL is not supported for the INTERSECT and
EXCEPT operators.

Grouping Operations
You learned about the basic GROUP BY and aggregations. Presto also supports the
advanced grouping operations from the SQL standard. Using GROUPING SETS, CUBE,
and ROLLUP, users can perform aggregations on multiple sets in a single query.

Grouping sets allow you to group multiple lists of columns in the same query. For
example, let’s say we want to group on (state, city, street), (state, city), and
(state). Without grouping sets, you have to run each group in its own separate
query and then combine the results. With grouping sets, Presto computes the group‐
ing for each set. The result schema is the union of the columns across the sets. For
columns that are not part of a group, a null value is added.

ROLLUP and CUBE can be expressed using GROUPING SETS and are shorthand. ROLLUP is
used to generate group sets based on a hierarchy. For example ROLLUP(a, b, c)

162 | Chapter 8: Using SQL in Presto

generates grouping sets (a, b, c), (a, b), (a), (). The CUBE operation generates all
possible combinations of the grouping. For example. CUBE (a, b, c) generates
group sets (a, b, c), (a, b), (a, c), (b, c), (a), (b), (c), ().

For example, say you want to compute the total of account balances per market seg‐
ment and compute the total account balances for all market segments:

SELECT mktsegment,
 round(sum(acctbal), 2) AS total_acctbal,
 GROUPING(mktsegment) AS id
FROM tpch.tiny.customer
GROUP BY ROLLUP (mktsegment)
ORDER BY id, total_acctbal;
 mktsegment | total_acctbal | id
------------+---------------+----
 FURNITURE | 1265282.8 | 0
 HOUSEHOLD | 1279340.66 | 0
 MACHINERY | 1296958.61 | 0
 AUTOMOBILE | 1395695.72 | 0
 BUILDING | 1444587.8 | 0
 NULL | 6681865.59 | 1
(6 rows)

With ROLLUP, you can compute aggregations on different groups. In this example, the
first five rows represent the total of account balances per market segment. The last
row represents the total of all account balances. Because there is no group for mktseg
ment, that is left as NULL. The GROUPING function is used to identify which rows belong
to which groups.

Without ROLLUP, you have to run this as two separate queries and combine them
together. In this example, we can use UNION, which helps you to understand concep‐
tually what ROLLUP is doing:

SELECT mktsegment,
 round(sum(acctbal), 2) AS total_acctbal,
 0 AS id
FROM tpch.tiny.customer
GROUP BY mktsegment
UNION
SELECT NULL, round(sum(acctbal), 2), 1
FROM tpch.tiny.customer
ORDER BY id, total_acctbal;
mktsegment | total_acctbal | id
------------+---------------+----
 FURNITURE | 1265282.8 | 0
 HOUSEHOLD | 1279340.66 | 0
 MACHINERY | 1296958.61 | 0
 AUTOMOBILE | 1395695.72 | 0
 BUILDING | 1444587.8 | 0
 NULL | 6681865.59 | 1
(6 rows)

Grouping Operations | 163

WITH Clause
The WITH clause is used to define an inline view within a single query. This is often
used to make a query more readable because the query may need to include the same
nested query multiple times.

In this query, let’s find the market segments whose total account balances are greater
than the average of the market segments:

SELECT mktsegment,
 total_per_mktsegment,
 average
FROM
 (
 SELECT mktsegment,
 round(sum(acctbal)) AS total_per_mktsegment
 FROM tpch.tiny.customer
 GROUP BY 1
),
 (
 SELECT round(avg(total_per_mktsegment)) AS average
 FROM
 (
 SELECT mktsegment,
 sum(acctbal) AS total_per_mktsegment
 FROM tpch.tiny.customer
 GROUP BY 1
)
)
WHERE total_per_mktsegment > average;
 mktsegment | total_per_mktsegment | average
------------+----------------------+-----------
 BUILDING | 1444588.0 | 1336373.0
 AUTOMOBILE | 1395696.0 | 1336373.0
(2 rows)

As you can see, this query is a bit complex. Using the WITH clause, we can simplify it
as follows:

WITH
total AS (
 SELECT mktsegment,
 round(sum(acctbal)) AS total_per_mktsegment
 FROM tpch.tiny.customer
 GROUP BY 1
),
average AS (
 SELECT round(avg(total_per_mktsegment)) AS average
 FROM total
)
SELECT mktsegment,
 total_per_mktsegment,

164 | Chapter 8: Using SQL in Presto

 average
FROM total,
 average
WHERE total_per_mktsegment > average;
mktsegment | total_per_mktsegment | average
------------+----------------------+-----------
 AUTOMOBILE | 1395696.0 | 1336373.0
 BUILDING | 1444588.0 | 1336373.0
(2 rows)

In this example, the second inline view is referring to the first. You can see that the
WITH inline view is executed twice. Currently, Presto does not materialize the results
to share across multiple executions. In fact, it would have to be a cost-based decision
on the complexity of the query, as it could be more efficient to execute a query multi‐
ple times than to store and retrieve the results.

Subqueries
Presto supports many common uses of subqueries. A subquery is an expression that
serves as input into a higher-level expression. In SQL, subqueries can be placed into
three categories:

• Scalar subqueries
• ANY/SOME
• ALL

Each category has two types, uncorrelated and correlated. A correlated subquery is
one that references other columns from outside the subquery.

Scalar Subquery
A scalar subquery is one that returns a single value—one row and one column:

SELECT regionkey, name
FROM tpch.tiny.nation
WHERE regionkey =
 (SELECT regionkey FROM tpch.tiny.region WHERE name = 'AMERICA');
 regionkey | name
-----------+---------------
 1 | ARGENTINA
 1 | BRAZIL
 1 | CANADA
 1 | PERU
 1 | UNITED STATES
(5 rows)

In this scalar example, the result from the subquery is 1. The WHERE condition essen‐
tially becomes regionkey = 1 and is evaluated for each row. Logically, the subquery

Subqueries | 165

is evaluated for every row in the nation table, for example, one hundred times for
one hundred rows. However Presto is smart enough to evaluate the subquery only
once and to use the static value all other times.

EXISTS Subquery
An EXISTS subquery evaluates to true if there are any rows. These queries are com‐
monly used as correlated subqueries. While an uncorrelated subquery is possible for
EXISTS, it is not as practical because anything that returns a single row evaluates to
true:

SELECT name
FROM tpch.tiny.nation
WHERE regionkey IN (SELECT regionkey FROM tpch.tiny.region)

Another common form of EXISTS subqueries is NOT EXISTS. However, this is simply
applying the negation to the result of the EXISTS subquery.

Quantified Subquery
ANY subqueries take the form expression operator quantifier (subquery). Valid opera‐
tor values are <, >, <=, >=, =, or <>. The token SOME may be used in place of ANY. The
most familiar form of this type of query is the expression IN subquery, which is
equivalent to expression = ANY subquery.

SELECT name
FROM nation
WHERE regionkey = ANY (SELECT regionkey FROM region)

This query is equivalent to the following, where IN is the shorthand form:

SELECT name
FROM nation
WHERE regionkey IN (SELECT regionkey FROM region)

The subquery must return exactly one column. Today, Presto does not support the
row expression subqueries, where more than one column is compared. Semantically,
for a given row of the outer query, the subquery is evaluated and the expression is
compared to each result row of the subquery. If at least one of these comparisons
evaluates to TRUE, the result of the ANY subquery condition is TRUE. The result is FALSE
if none of the comparisons evaluate to TRUE. This is repeated for each row of the outer
query.

You should be aware of some nuances. If the expression is NULL, the result of the IN
expression is NULL. Additionally, if no comparisons evaluate to TRUE, but there is a
NULL value in the subquery, the IN expression evaluates to NULL. In most cases, this
remains unnoticed because a result of FALSE or NULL filters out the row. However, if

166 | Chapter 8: Using SQL in Presto

this IN expression is to serve as input to a surrounding expression that is sensitive to
NULL values (e.g., surrounded with NOT), then it would matter.

ALL subqueries work similarly to ANY. For a given row of the outer query, the sub‐
query is evaluated and the expression is compared to each result row of the subquery.
If all of the comparisons evaluate to TRUE, the result of ALL is TRUE. If there is at least
one FALSE evaluation, the result of ALL is FALSE.

As with ANY, some nuances are not obvious at first. When the subquery is empty and
returns no rows, ALL evaluates to TRUE. If none of the comparisons return FALSE and
at least one comparison returns NULL, the result of ALL is NULL. The most familiar
form of ALL is <> ALL, which is equivalent to NOT IN.

Deleting Data from a Table
The DELETE statement can delete rows of data from a table. The statement provides an
optional WHERE clause to restrict which rows are deleted. Without a WHERE clause, all
the data is deleted from the table:

DELETE FROM table_name [WHERE condition]

Various connectors have limited or no support for deletion. For example, deletion is
not supported by the Kafka connector. The Hive connector supports deletion only if
a WHERE clause specifies a partition key that can be used to delete entire partitions:

DELETE FROM hive.web.page_views
WHERE view_date = DATE '2019-01-14' AND country = 'US'

Conclusion
Exciting what you can do with SQL in Presto, isn’t it? With the knowledge from this
chapter, you can already craft very complex queries and achieve some pretty complex
analysis of any data exposed to Presto.

Of course, there is more. So read on in Chapter 9 to learn about functions, operators,
and other features for querying your data with Presto.

Deleting Data from a Table | 167

CHAPTER 9

Advanced SQL

While you can certainly achieve a lot with the power of SQL statements, as covered in
Chapter 8, you are really only scratching the surface of what you can do with more
complex processing with queries in Presto. In this chapter, you are going to cover
more advanced features such as functions, operators, and other features.

Functions and Operators Introduction
So far, you’ve learned about the basics, including catalogs, schemas, tables, data types,
and various SQL statements. This knowledge is useful when querying data from one
or more tables in one or more catalogs in Presto. In the examples, we focused mostly
on writing the queries by using the data from the different attributes, or columns, in
the table.

SQL functions and operators exist to enable more complex and comprehensive SQL
queries. In this chapter, we focus on the functions and operators supported by Presto
and provide examples of their use.

Functions and operators in SQL are internally equivalent. Functions generally use the
syntax form function_name(function_arg1, …) and operators use a different syntax,
similar to operators in programming languages and mathematics. Operators are a
syntactic abbreviation and improvement for commonly used functions. An example
of an equivalent operator and function are the || operator and the concat() func‐
tion. Both are used to concatenate strings.

169

Operators in SQL and in Presto come in two general types:

Binary operators
A binary operator takes the input of two operands to produce a single value
result. The operator itself defines what the operand data types must be and what
the result data type is. A binary operator is written in the format operand
operator operand.

Unary operators
A unary operator takes the input of a single operator and produces a single value
result. As with binary operators, the operator requires what the operand data
type must be and what the result data type must be. A unary operator is written
in the format operator operand.

With both binary and unary operators, the operand input may be the result of an
operator itself creating a tree of operators. For example, in 2 × 2 × 2, the result of the
first operator 2 × 2 is input to the second multiplier operator.

In the following sections of this chapter, you learn details about numerous functions
and operators supported by Presto.

Scalar Functions and Operators
A scalar function in SQL is invoked within a SQL statement. Abstractly, it takes one or
more single-value input parameters, performs an operation based on the input, and
then produces a single value. As a concrete example, consider the SQL function in
power(x, p). This power function returns x raised to the power of p:

SELECT power(2, 3);
 _col0

 8.0
(1 row)

Of course, you could simply use the multiplication operators to achieve the same
goal. Using our example, 2 × 2 × 2 also produces the value 8. But using functions
allows the logic to be encapsulated, making it easier to reuse in SQL. Moreover, we
achieve other benefits such as reducing room for mistakes and optimizing execution
of the function.

Scalar functions can be used anywhere in a SQL statement where an expression can
be used, provided it is semantically correct. For example, you can write a SQL query
SELECT * FROM page_views WHERE power(2, 3). This passes the syntactic checks but
fails during semantic analysis because the return type of the power function is a dou‐
ble value and not the required Boolean. Writing the SQL query as SELECT * FROM

170 | Chapter 9: Advanced SQL

page_views WHERE power(2, 3) = 8 works, even though it may not be a useful
query.

Presto contains a set of built-in functions and operators that can be immediately
used. In this section, you learn about common uses and highlights of some interest‐
ing ones. We do not fully enumerate every function and operator, since this chapter is
not meant to be a reference. After learning the basics here, you can refer to the Presto
documentation to learn more.

Presto also supports user-defined functions (UDFs), which allow
you to write your own function implementations in Java and
deploy them in Presto to execute within SQL queries. This is, how‐
ever, beyond the scope of this book.

Boolean Operators
Boolean operators are binary operators and used in SQL to compare the values of two
operands producing a Boolean result of TRUE, FALSE, or NULL. These are most com‐
monly used on conditional clauses such as WHERE, HAVING, or ON, and are listed in
Table 9-1. They can be used anywhere in a query that an expression can be used.

Table 9-1. Boolean operators

Operator Description

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

= Equal

<> Not equal

!= Not equal

The syntax != is not part of the SQL standard but is commonly
used in various programming languages. It is implemented in other
popular databases, and therefore also provided in Presto for
convenience.

Boolean Operators | 171

Here are some example usages of Boolean operators:

What are the best days of the week to fly out of Boston in the month of February?

SELECT dayofweek, avg(depdelayminutes) AS delay
FROM flights_orc
WHERE month = 2 AND origincityname LIKE '%Boston%'
GROUP BY dayofweek
ORDER BY dayofweek;

 dayofweek | delay
-----------+--------------------
 1 | 10.613156692553677
 2 | 9.97405624214174
 3 | 9.548045977011494
 4 | 11.822725778003647
 5 | 15.875475113122173
 6 | 11.184173669467787
 7 | 10.788121285791464
(7 rows)

What is the average delay per carrier per year between the years 2010 and 2014?

SELECT avg(arrdelayminutes) AS avg_arrival_delay, carrier
FROM flights_orc
WHERE year > 2010 AND year < 2014
GROUP BY carrier, year;

 avg_arrival_delay | carrier
--------------------+---------
 11.755326255888736 | 9E
 12.557365851045104 | AA
 13.39056266711295 | AA
 13.302276406082575 | AA
 6.4657695873247745 | AS
 7.048865559750841 | AS
 6.907012760530203 | AS
 17.008730526574663 | B6
 13.28933909176506 | B6
 16.242635221309246 | B6
...

Logical Operators
Three more operators you use in SQL and in Presto are the logical operators AND, OR,
and NOT. The operators AND and OR are referred to as binary operators since they take
two parameters as input. NOT is a unary operator that takes a single parameter as
input.

172 | Chapter 9: Advanced SQL

These logical operators return a single Boolean variable of TRUE, FALSE, or NULL
(UNKNOWN), based on Boolean type input data. Typically, these operators are used
together to form a conditional clause, just like the Boolean operators.

The concept of these three operators are similar to programming languages but have
different semantics because of the way the NULL value affects the semantics. For exam‐
ple, NULL AND NULL does not equate to TRUE but rather to NULL. If you think of NULL as
the absence of a value, this becomes easier to comprehend. Table 9-2 displays how the
operators handle the three values.

Table 9-2. Logical operator results for AND and OR

x y x AND y x OR y

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL TRUE NULL TRUE

NULL FALSE FALSE NULL

NULL NULL NULL NULL

When it comes to the NOT operator, just keep in mind that NOT NULL evaluates to
NULL, and not TRUE or FALSE.

Range Selection with the BETWEEN Statement
The BETWEEN statement can be considered a special case of a binary operator and
defines a range. It’s really two comparisons connected by an AND. The data types of the
selected field and the two range values have to be identical. NOT BETWEEN is simply the
negation. The following two queries are equivalent, as you can see from the result:

SELECT count(*) FROM flights_orc WHERE year BETWEEN 2010 AND 2012;
 _col0

 18632160
(1 row)

SELECT count(*) FROM flights_orc WHERE year >= 2010 AND year <= 2012;
 _col0

 18632160
(1 row)

Range Selection with the BETWEEN Statement | 173

Value Detection with IS (NOT) NULL
The IS NULL statement allows you to detect if a value exists. It can be considered a
special type of unary operator. IS NOT NULL is the negation. You may want to count
some rows, but not want to count rows without values. Perhaps the data is incomplete
or does not make sense.

For example, to calculate the average delay of airplanes by year, you have to ensure
that you are counting only flights that actually happened. This is reflected by the fact
that airtime has a value, which this query takes into account:

SELECT avg(DepDelayMinutes) AS delay, year
FROM flights_orc
WHERE airtime IS NOT NULL and year >= 2015
GROUP BY year
ORDER BY year desc;
 delay | year
--------------------+------
 12.041834908176538 | 2019
 13.178923805354275 | 2018
 12.373612267166829 | 2017
 10.51195619395339 | 2016
 11.047527214544516 | 2015
(5 rows)

Mathematical Functions and Operators
Mathematical functions and operators open up a wide range of use cases and are of
critical importance for many of them. Table 9-3 lists mathematical operators, and
Table 9-4 lists mathematical functions.

Table 9-3. Mathematical operators

Operator Description Example

+ Addition SELECT 1+1

- Subtraction SELECT 2-1

* Multiplication SELECT 2*3

/ Division SELECT 9/2

% Modulus SELECT 6 % 5

174 | Chapter 9: Advanced SQL

Table 9-4. Commonly used mathematical functions

Function Return type Description Example

abs(x) Same as input Absolute value of x SELECT abs(-1)

cbrt(x) double Cube root of x SELECT cbrt(9)

ceiling(x) Same as input Round x up to nearest integer SELECT ceiling(4.2)

degrees(x) double Convert the angle x from radians to degrees SELECT degrees(1.047)

exp(x) double Euler’s number raised to the power of x SELECT exp(1)

floor(x) Same as input Round x down to the nearest integer SELECT floor(4.2)

ln(x) double Natural logarithm of x SELECT ln(exp(1))

log(b, x) double Base b logarithm of x SELECT log(2, 64)

log2(x) double Base 2 logarithm of x SELECT log2(64)

log10(x) double Base 10 logarithm of x SELECT log10(140)

mod(n, m) Same as input Modulos. Equivalent to n % m SELECT mod(3, 2)

power(x, p) double X raised to the power of p SELECT pow(2, 6)

radians(x) double Convert the angle x from degrees to radians SELECT radians(60)

round(x) Same as input Round x to the nearest integer SELECT round(pi())

round(x, d) Same as input Round x to d decimal places SELECT round(pi(), 2)

sqrt(x) double Square root of x SELECT sqrt(64)

truncate(x) double Round x to integer by truncating the digits after the decimal point SELECT truncate(e())

Trigonometric Functions
Presto provides a set of trigonometric functions that take the argument type radians.
The return data type is double for all functions.

If you wish to convert between radians and degrees, Presto provides conversion func‐
tions degrees(x) and radians(x). Table 9-5 lists the trigonometric functions.

Table 9-5. Trigonometric functions

Function Description

cos(x) Cosine of x

acos(x) Arc cosine of x

cosh(x) Hyperbolic cosine of x

sin(x) Sine of x

asin(x) Arc sine of x

tan(x) Tangent of x

atan(x) Arc tangent of x

atan2(y, x) Arc tangent of y / x

tanh(x) Hyperbolic tangent of x

Trigonometric Functions | 175

Constant and Random Functions
Presto provides functions that return mathematical constants and conceptual values
as well as random values, as shown in Table 9-6.

Table 9-6. Miscellaneous mathematical constants and functions

Function Return type Description Example

e() double Euler’s number 2.718281828459045

pi() double Pi 3.141592653589793

infinity() double Presto constant used to represent infinity Infinity

nan() double Presto constant use to represent not a number NaN

random() double Random double >= 0.0 and < 1.0 SELECT random()

random(n) Same as input Random double >= 0.0 and < n SELECT random(100)

String Functions and Operators
String manipulation is another common use case, and Presto includes rich support
for it. The || operator is used to concatenate strings together:

SELECT 'Emily' || ' Grace';
 _col0

 Emily Grace
(1 row)

Presto provides several useful string functions, shown in Table 9-7.

Table 9-7. String functions

Function Return type Description Example

chr(n) varchar Unicode code point n as a character string. SELECT chr(65)

codepoint(string) integer Unicode code point of character. SELECT codepoint(A)

concat(string1, …,
stringN)

varchar Equivalent to the operator. SELECT concat(Emily, ' , ‘Grace);

length(string) bigint Length of string. SELECT length(saippuakivikauppias)

lower(string) varchar Convert string to lowercase. SELECT lower(UPPER);

lpad(string, size,
padstring)

varchar Left pad the string with size number of
characters. Truncates the string if the size is
less than the actual length of the string.

SELECT lpad(A, 4, ' ')

ltrim(string) varchar Trim the leading whitespace. SELECT ltrim(lpad(A, 4, ' '))

replace(string, search,
replace)

varchar Replace instances of search in string with
replace.

SELECT replace(555.555.5555, ., -)

reverse(string) varchar Reverse the character string. SELECT reverse(saippuakivikauppias)

176 | Chapter 9: Advanced SQL

Function Return type Description Example

rpad(string, size,
padstring)

varchar Right pad the string with size number of
character. Truncates the string if size is less
than the actual length of the string.

SELECT rpad(A, 4, #)

rtrim(string) varchar Trim the trailing whitespace. SELECT rtrim(rpad(A, 4, ' '))

split(string, delimiter) array(varchar) Splits string on delimiter and returns an
array.

SELECT split(2017,2018,2019, ,)

strpos(string,
substring)

bigint Starting position at first instance of the
substring in the string. Index starts at 1. 0 is
returned if the substring is not found.

SELECT strpos(prestosql.io, .io);

substr(string, start,
length)

varchar Substring from start position of length. Index
starts at 1. Negative index is backward from
end.

SELECT substr(prestosql.io, 1, 9)

trim(string) varchar Remove leading and trailing whitespace.
Same as applying both rtrim and ltrim.

SELECT trim(' A ')

upper(string) varchar Converts string to uppercase. SELECT upper(lower)

word_stem(word,
lang)

varchar Returns the stem of the word using the
specified language.

SELECT word_stem(presto, it)

Strings and Maps
Two string functions return maps that are interesting, given Presto’s ability to further
process map data:

split_to_map(string, entryDelimiter, keyValueDelimiter) → map<varchar, varchar>

This function splits the string argument by using the entryDelimiter, which splits
the string into key-value pairs and then uses the keyValueDelimiter to split each pair
into a key and value. The result is a map.

A useful example usage of this function is parsing of URL parameters:

SELECT split_to_map('userid=1234&reftype=email&device=mobile', '&', '=');
 _col0

 {device=mobile, userid=1234, reftype=email}
(1 row)

When there are multiple occurrences of the same key, the split_to_map function
returns an error.

The similar function split_to_multimap can be used when there are multiple occur‐
rences of the same key. In the preceding example, say there is a duplicate device:

SELECT
split_to_multimap(
 'userid=1234&reftype=email&device=mobile&device=desktop',
 '&',
 '=');

Strings and Maps | 177

Unicode
Presto provides a set of Unicode functions, shown in Table 9-8. These functions work
on valid UTF-8 encoded Unicode points. Functions consider each code point sepa‐
rately, even if multiple code points are used to represent a single character.

Table 9-8. Unicode-related functions

Function Return type Description

chr(n) varchar Returns the Unicode code point n as a single character string

codepoint(string) integer Returns the Unicode code point of the only character of string

normalize(string) varchar This function transforms string with NFC normalization form

normalize(string, form) varchar This function transforms with the specified normalization form

The form argument must be one of the keywords in Table 9-9:

Table 9-9. Normalization forms

Form Description

NFD Canonical decomposition

NFC Canonical decomposition, followed by canonical composition

NFKD Compatibility decomposition

NFKC Compatibility decomposition, followed by canonical composition

The Unicode standard describes these forms in detail.

This SQL-standard function has special syntax and requires speci‐
fying form as a keyword, not as a string.

to_utf8(string) → varbinary

The function encodes the string into an UTF-8 varbinary representation.

from_utf8(binary) → varchar

The function decodes the UTF-8 encoded string from binary. Any invalid UTF-8
sequences are replaced with the Unicode replacement character U+FFFD.

from_utf8(binary, replace) → varchar

This function decodes a UTF-8 encoded string from binary. Any invalid UTF-8
sequences are replaced with replace.

Let’s use the chr function to return the Unicode code point as a string:

178 | Chapter 9: Advanced SQL

http://unicode.org/reports/tr15/#Norm_Forms

SELECT chr(241);
 _col0

 ñ
(1 row)

In this example, we are using the function codepoint to return the Unicode code
point of the string:

SELECT codepoint(u&'\00F1');
 _col0

 241
(1 row)

Now we are demonstrating how the Spanish eñe character can be represented multi‐
ple ways in Unicode. It can be represented as either a single code point or by compos‐
ing multiple code points. When compared to each other directly, they are not treated
as equivalent. This is where the normalization function can be used to normalize
them to a common form to be compared and treated as equivalent:

SELECT u&'\00F1',
u&'\006E\0303',
u&'\00F1' = u&'\006E\0303',
normalize(u&'\00F1') = normalize(u&'\006E\0303');

 _col0 | _col1 | _col2 | _col3
-------+-------+-------+-------
 ñ | ñ | false | true
(1 row)

In some instances, code points can be composed as a single code point. For example,
the Roman number IX can be written with two code points for I and X. Or you can
use a single code point for it. To compare the two for equivalence, you need to use the
normalization function:

SELECT u&'\2168', 'IX', u&'\2168' = 'IX', normalize(u&'\2168', NFKC) = 'IX';
 _col0 | _col1 | _col2 | _col3
-------+-------+-------+-------
 Ⅸ | IX | false | true
(1 row)

Regular Expressions
Presto supports pattern matching by providing both the SQL LIKE operator and regu‐
lar expression (regex) functions. LIKE returns a Boolean and uses the syntax search
LIKE pattern.

Regular Expressions | 179

LIKE is simple to use for basic patterns but may not be expressive enough for all situa‐
tions. LIKE patterns support two symbols: _ denotes matching any single character,
and % denotes matching zero or more characters.

For example, let’s say you want to find flights originating from the Dallas area. You
can write the following query:

SELECT origincityname, count(*)
FROM flights_orc
WHERE origincityname LIKE '%Dallas%'
GROUP BY origincityname;

 origincityname | _col1
-----------------------+---------
 Dallas/Fort Worth, TX | 7601863
 Dallas, TX | 1297795
(2 rows)

Anything more complex requires using regular expression functions, which provide
powerful pattern matching using the Java pattern syntax. These functions listed in
Table 9-10 are used for more complex matching, replacing matching strings, extract‐
ing matching strings, and splitting strings based on the matched location. Table 9-10
lists regular expression functions.

Table 9-10. Regular expression functions

Function Description

regexp_extract_all(string, pattern,
[group]) → array(varchar)

Return an array of substrings matched by the pattern in string. A variant of the
function takes a group argument for the capturing group.

regexp_extract(string, pattern
[group]) → varchar

Return the substring matched by pattern in string. A variant of the function takes a
group argument for the capturing group.

regexp_like(string, pattern) →
boolean

Returns a Boolean whether or not the pattern is contained within the string. This
differs from LIKE, as LIKE tries to match the entire string with the pattern.

regexp_replace(string, pattern,
[replacement]) → varchar

Returns a string for which the substrings matched by pattern are replaced with
replacement. There is a variant of the function without replacement. In this case, the
strings are simply removed. Capturing groups can be used in the replacement string.

regexp_replace(string, pattern,
function) → varchar

This is similar to regexp_replace(string, pattern, [replacement]) except that it takes a
Lambda expression.

regexp_split(string, pattern) →
array(varchar)

Returns an array of strings split by the pattern. The pattern is like a delimiter. Similar
to split(string, delimiter) with a more expression delimiter as a pattern.

Table 9-11 shows common selected pattern examples you can use. The full range of
supported patterns is extensively documented in the Java documentation about regu‐
lar expressions.

180 | Chapter 9: Advanced SQL

Table 9-11. Regular expression examples

Pattern Description Examples

. Any character A

a The single character a regexp_like(abc, a) → true

[a-zA-Z] Range of characters regexp_like(abc, [a-zA-Z]), regexp_like(123, [a-zA-Z])

1 The single digit 1 regexp_like(123, 1)

\d Any digit regexp_like(123, \d)

^ Match to beginning of line regexp_like(abc, ^ab^), regexp_like(abc, ^bc^)

$ Match to end of line regexp_like(abc, bc$), regexp_like(abc, ab$)

? One or zero regexp_like(abc, d?)

+ One or more regexp_like(abc, d+)

* Zero or more

In this example, we want to extract the character b from the string. This results in an
array where each entry is a match:

SELECT regexp_extract_all('abbbbcccb', 'b');
 _col0

 [b, b, b, b, b]
(1 row)

Let’s extract the character b again. However, we wish to extract a sequence of them.
The result is an array with only two entries this time, since one of the entries contains
the contiguous sequence:

SELECT regexp_extract_all('abbbbcccb', 'b+');
 _col0

 [bbbb, b]
(1 row)

In this example, we leverage the capturing groups in the replacement. We are search‐
ing for a sequence of bc and then swap the order:

SELECT regexp_replace('abc', '(b)(c)', '$2$1');
 _col0

 acb
(1 row)

Regular Expressions | 181

Unnesting Complex Data Types
The UNNEST operation allows you to expand the complex collection data types, dis‐
cussed in “Collection Data Types” on page 149, into a relation. This is extremely pow‐
erful for using big data and nested structural data types. By unnesting the data into a
relation, you can more easily access the values that are wrapped inside the structure
for querying.

As an example, let’s say you have stored some access control policies and wish to
query them. First, we have a user that can be associated with one or more roles. And a
role can be associated with one or more sets of permissions. And perhaps this logic is
defined by a schema that looks like the following:

SELECT * FROM permissions;
 user | roles
--------+--
 matt | [[WebService_ReadWrite, Storage_ReadWrite],
 [Billing_Read]]
 martin | [[WebService_ReadWrite, Storage_ReadWrite],
 [Billing_ReadWrite, Audit_Read]]
(2 rows)

We can expand each role and associate to the user by using UNNEST:

SELECT user, t.roles
FROM permissions,
UNNEST(permissions.roles) AS t(roles);
 user | roles
--------+---
 martin | [WebService_ReadWrite, Storage_ReadWrite]
 martin | [Billing_ReadWrite, Audit_Read]
 matt | [WebService_ReadWrite, Storage_ReadWrite]
 matt | [Billing_Read]
(4 rows)

Now let’s say we want to filter the data, and find only the users with the Audit_Read
permission. We can expand it further:

SELECT user, permission
FROM permissions,
UNNEST(permissions.roles) AS t1(roles),
UNNEST(t1.roles) AS t2(permission);
 user | permission
 --------+----------------------
 martin | WebService_ReadWrite
 martin | Storage_ReadWrite
 martin | Billing_ReadWrite
 martin | Audit_Read
 matt | WebService_ReadWrite
 matt | Storage_ReadWrite

182 | Chapter 9: Advanced SQL

 matt | Billing_Read
(7 rows)

And finally, let’s add our filter:

SELECT user, permission
FROM permissions,
UNNEST(permissions.roles) AS t1(roles),
UNNEST(t1.roles) AS t2(permission)
WHERE permission = ‘Audit_Read’;
 user | permission
--------+-----------
 martin | Audit_Read
(1 row)

JSON Functions
In modern applications and systems, JSON data is ubiquitous and has a variety of
applications. JavaScript Object Notation (JSON) is a human readable and flexible data
format. It is commonly used in web applications for transferring data between the
browser and server. A lot of data that requires analysis originates from web traffic and
is therefore commonly produced and stored using the JSON format. Dedicated docu‐
ment stores as well as many relational database systems now support JSON data.

As Presto is a SQL-on-Anything engine, it may retrieve data from data sources in
JSON format. For example, the Kafka, Elasticsearch, and the MongoDB connectors
return JSON or can expose the source JSON data. Presto can also use JSON files in
HDFS or cloud object storage. Rather than force the connectors to transform data
from JSON format into a strict relational data structure with columns and rows,
Presto can operate on the JSON data with the functions in Table 9-12. This allows the
user to perform the actions they would like with the original data.

Table 9-12. JSON-related functions

Function Description Example

is_json_scalar(json) Returns Boolean if the values is a scalar SELECT is_json_scalar(abc)

json_array_contains(json,
value)

Returns Boolean true if the value is contained in
the JSON array

SELECT json_array_contains([1, 2, 3],
1)

json_array_length(json) Returns the length of the array in bigint SELECT json_array_length([1, 2, 3])

JSON Functions | 183

Date and Time Functions and Operators
In “Temporal Data Types” on page 150, we discussed temporal data types in Presto.
You learned about the varying types that exist, input and output formatting and rep‐
resentations, time zones and the nuances, and finally intervals. While that covered
storing and representing the temporal types, it’s often common and important to
operate on the data using functions and operators.

Presto supports + and - operators for temporal types. These operators can be used
when adding or subtracting a date time with an interval type, or with two interval
types. However, it doesn’t have any meaning to add together two timestamps. Addi‐
tionally, YEAR TO MONTH and DAY TO SECOND interval types cannot be combined.

You can add one hour to the time 12:00 to get the value 13:00:

SELECT TIME '12:00' + INTERVAL '1' HOUR;
 _col0

 13:00:00.000
(1 row)

Next, you can add together one year and 15 months, and get the result of two years
and three months:

SELECT INTERVAL '1' YEAR + INTERVAL '15' MONTH;
 _col0

 2-3
(1 row)

Another useful operator AT TIME ZONE allows you to calculate the time in different
time zones:

SELECT TIME '02:56:15 UTC' AT TIME ZONE '-08:00'
 _col0

 18:56:15.000 -08:00
(1 row)

You can parse a literal string to a timestamp value as long as you use the correct for‐
mat:

SELECT TIMESTAMP '1983-10-19 07:30:05.123';
 _col0

 1983-10-19 07:30:05.123

In many cases, it is more convenient to parse a date or timestamp from a string by
using the ISO 8601 format and one of the functions in Table 9-13.

184 | Chapter 9: Advanced SQL

Table 9-13. ISO8061 parsing functions

Function Return type Description

from_iso8601_timestamp(string) timestamp with time
zone

Parses a ISO 8601 formatted string and returns a timestamp
with time zone

from_iso8601_date(string) date Parses the ISO 8601 formatted string and returns a date

ISO 8061 is a well-documented standard in terms of how to format the time string.
When specifying a string to one of the preceding functions, it must use one of the
following formats:

• YYYY

• YYYY-MM

• YYYY-MM-DD

• HH

• HH:MM

• HH:MM:SS

• HH:MM:SS.SSS

In addition, you can combine the date and time by using the T delimiter. Let’s look at
a few examples.

Here, we are parsing the iso8601 date and time into a SQL timestamp:

SELECT from_iso8601_timestamp('2019-03-17T21:05:19Z');
 _col0

 2019-03-17 21:05:19.000 UTC
(1 row)

Next, we specify a time zone other than the default UTC:

SELECT from_iso8601_timestamp('2019-03-17T21:05:19-05:00');
 _col0

 2019-03-17 21:05:19.000 -05:00
(1 row)

The standard also allows you to specify the weeks into the year. In this example, week
10 of 2019 equates to March 4, 2019:

SELECT from_iso8601_timestamp('2019-W10');
 _col0

 2019-03-04 00:00:00.000 UTC
(1 row)

Date and Time Functions and Operators | 185

In this example, we do not specify time and parse the iso8601 string to a SQL date
type:

SELECT from_iso8601_date('2019-03-17');
 _col0

 2019-03-17
(1 row)

Presto provides a rich set of date- and time-related functions. These are crucial for
any application involving time, where you may often want to convert, compare, or
extract time elements. Table 9-14 shows a selection of available functions. Check out
“Documentation” on page 13 for further useful functions and other tips and tricks.

Table 9-14. Miscellaneous temporal functions and values

Function Return type Description

current_timezone() varchar Return the current time zone

current_date date Return the current date

current_time time with time zone Return the current time and time zone

current_timestamp or now() timestamp with time zone Return the current date, time and time zone

localtime time Return the time only, based on the local time zone

localtimestamp timestamp Return the date and time, based on the local time zone

from_unixtime(unixtime) timestamp Convert a Unix time and produce the date and time

to_unixtime(timestamp) double Convert a date and time to a Unix time value

to_milliseconds(interval) bigint Convert interval to milliseconds

Histograms
Presto provides the width_bucket function that can be used to create histograms with
consistent widths:

width_bucket(x, bound1, bound2, n) -> bigint

The expression x is the numeric expression for which to create the histogram. The
consistent width histogram contains n buckets and is bounded between the values for
bound1 and bound2. The function returns the bucket number for each value of
expression x.

Let’s take our flight data set and compute a histogram over a 10-year period from
2010 to 2020:

SELECT count(*) count, year, width_bucket(year, 2010, 2020, 4) bucket
FROM flights_orc
WHERE year >= 2010
GROUP BY year;

186 | Chapter 9: Advanced SQL

 count | year | bucket
---------+------+--------
 7129270 | 2010 | 0
 7140596 | 2011 | 1
 7141922 | 2012 | 1
 7455458 | 2013 | 1
 7009726 | 2014 | 2
 6450285 | 2015 | 2
 6450117 | 2016 | 3
 6085281 | 2017 | 3
 6096762 | 2018 | 3
 6369482 | 2019 | 4
(10 rows)

Note that in addition to the expected buckets 1, 2, 3, and 4, we have buckets 0 and 5.
These buckets are used for the values outside the minimum and maximum bounds of
the histogram—values for years 2010 and 2019, in this case.

Aggregate Functions
In SQL, aggregate functions operate and compute a value or a set of values. Unlike
scalar functions that produce a single value for each input value, aggregate functions
produce a single value for a set of input values. Presto supports the common general
aggregate functions you find in most other database systems, as you can see in
Table 9-15.

Aggregate functions can take an optional ORDER BY clause after the argument. Seman‐
tically, this means that the input set is ordered before performing the aggregation. For
most aggregations the order doesn’t matter.

Table 9-15. Aggregate functions

Function Return type Description

count(*) bigint Count the number of values returned

count(x) bigint Count the number of non-null values

sum(x) Same as input Compute the sum of the input values

min(x) Same as input Return the minimum value of all the input values

max(x) Same as input Return the maximum of all the input values

avg(x) double Return the arithmetic mean of the input values

Map Aggregate Functions
Presto supports several useful map-related functions, detailed in Table 9-16. For some
of these functions, the optional ORDER BY clause is needed, depending on the desired
results. We demonstrate this use by example with our iris data set (see “Iris Data Set”
on page 15).

Aggregate Functions | 187

Table 9-16. Map aggregate functions

Function Return type Description

histogram(x) map(K,
bigint)

This function creates a histogram from the x item. It returns a map where the key is
x and the value is the number of times x appears.

map_agg(key, value) map(K, V) Creates a map from a column of keys and values. Duplicates chosen at random. Use
multimap_agg to retain all the values.

map_union(x(K, V)) map(K, V) The function performs the unions of multiple maps into a single map. The caveat is
that if the same key is found in multiple maps, the value chosen has no guarantee.
The function does not merge the two values.

multimap_agg(key,
value)

map(K,
array(V))

This function is similar to map_agg in that it creates a map from the column and
keys.

Let’s create a histogram of petal_length_cm. Because the data is precise, you can use
the floor function to create wider buckets for the histogram:

SELECT histogram(floor(petal_length_cm))
FROM memory.default.iris;
 _col0
--
 {1.0=50, 4.0=43, 5.0=35, 3.0=11, 6.0=11}
(1 row)

You may recognize that a histogram output is similar to what you see when doing a
GROUP BY and COUNT. We can use the result as input to the map_agg function to create
the histogram with the same results:

SELECT floor(petal_length_cm) k, count(*) v
FROM memory.default.iris
GROUP BY 1
ORDER BY 2 DESC;
 k | v
-----+----
 1.0 | 50
 4.0 | 43
 5.0 | 35
 3.0 | 11
 6.0 | 11
(5 rows)

SELECT map_agg(k, v) FROM (
 SELECT floor(petal_length_cm) k,
 count(*) v
 FROM iris
 GROUP BY 1
);
 _col0
--
 {4.0=43, 1.0=50, 5.0=35, 3.0=11, 6.0=11}
(1 row)

188 | Chapter 9: Advanced SQL

SELECT multimap_agg(species, petal_length_cm)
FROM memory.default.iris;
--
 {versicolor=[4.7, 4.5, 4.9..], ,
 virginica=[6.0, 5.1, 5.9, ..],
 setosa=[1.4, 1.4, 1…] ..
(1 row)

The map_union function is useful for combining maps. Say you have multiple maps.
We’ll use the histogram function in this example to create them:

SELECT histogram(floor(petal_length_cm)) x
FROM memory.default.iris
GROUP BY species;
 x

 {4.0=6, 5.0=33, 6.0=11}
 {4.0=37, 5.0=2, 3.0=11}
 {1.0=50}
(3 rows)

We can use map_union to combine them. However, notice how keys 4.0 and 5.0 exist
in different maps. In these cases, Presto arbitrarily picks one set of values. It does not
perform any type of merging. While adding them is correct in this case, it
does not always make sense. For example, the values could be strings, which make
it less clear how to combine them:

SELECT map_union(m)
FROM (
 SELECT histogram(floor(petal_length_cm)) m
 FROM memory.default.iris
 GROUP BY species
);
 _col0

 {4.0=6, 1.0=50, 5.0=33, 6.0=11, 3.0=11}
(1 row)

Approximate Aggregate Functions
When working with large amounts of data and aggregations, data processing can be
resource intensive, requiring more hardware to scale Presto out to provide interactiv‐
ity. Sometimes scaling out becomes prohibitively expensive.

To help in this scenario, Presto provides a set of aggregation functions that return the
approximation rather than the exact result. These approximation aggregation func‐
tions use much less memory and computation power at the expense of not providing
the exact result.

In many cases when dealing with big data, this is acceptable since the data itself is
often not completely exact. There may be a missing day of data, for example. But

Aggregate Functions | 189

when considering aggregations over a year, the missing data doesn’t matter for certain
types of analysis.

Remember, Presto is not designed or meant to be used for OLTP-style queries. It is
not suitable to produce reports for a company’s ledger with absolute accuracy. How‐
ever, for OLAP use cases—analytics requiring you to understand trends only but not
to have completely accurate results—can be acceptable and satisfy the requirements.

Presto provides two main approximation functions: approx_distinct and
approx_percentile.

Presto implements approx_distinct by using the HyperLogLog algorithm. Counting
distinct rows is a very common query that you likely need in order to satisfy a data
analysis requirement. For example, you may want to count the number of distinct
user IDs or IP addresses in your logs to know how many users visited your website on
a given day, month, or year. Because users may have visited your website multiple
times, simply counting the number of entries in your log does not work. You need to
find the distinct number of users, requiring you to count each user’s representation
only once. Doing so requires you to keep a structure in memory so you know not to
double-count membership. For large amounts of data, this becomes impractical and
certainly slow. HyperLogLog provides an alternative approach. The actual algorithm
is not discussed in this book.

To implement the approximate distinct result, Presto provides a HyperLogLog (HLL)
data type that you can also use as a user. Because Presto provides HyperLogLog as a
data type, this means that it can be stored as a table. This becomes incredibly valuable
because you can store computations to merge them back later. Say your data is parti‐
tioned by day. Each day, you can create a HyperLogLog structure for the users that
day and store it. Then when you want to compute the approximate distinct, you can
merge the HLLs together to get the cardinality for approx-distinct.

Window Functions
Presto supports the use of standard window functions from SQL, which allow you to
define a set of records to use as input for a function.

For example, let’s look at the sepal length from our iris flowers (see “Iris Data Set” on
page 15).

Without the window function, you can get the average sepal length for all species:

SELECT avg(sepal_length_cm)
FROM memory.default.iris;
5.8433332

190 | Chapter 9: Advanced SQL

Alternatively you can calculate the average for a specific species:

SELECT avg(sepal_length_cm)
FROM memory.default.iris
WHERE species = 'setosa';
5.006

However, what if you want a list of all measurements and each compared to the over‐
all average? The OVER() window function allows you to do just that:

SELECT species, sepal_length_cm,
 avg(sepal_length_cm) OVER() AS avgsepal
FROM memory.default.iris;
 species | sepal_length_cm | avgsepal
------------+---------------+-----------
 setosa | 5.1 | 5.8433332
 setosa | 4.9 | 5.8433332
 ...
 versicolor | 7.0 | 5.8433332
 versicolor | 6.4 | 5.8433332
 versicolor | 6.9 | 5.8433332
...

The window function basically says to calculate the average overall values in the same
table. You can also create multiple windows with the PARTITION BY statement:

SELECT species, sepal_length_cm,
 avg(sepal_length_cm) OVER(PARTITION BY species) AS avgsepal
FROM memory.default.iris;
 species | sepal_length_cm | avgsepal
------------+---------------+----------
 setosa | 5.1 | 5.006
 setosa | 4.9 | 5.006
 setosa | 4.7 | 5.006
...
 virginica | 6.3 | 6.588
 virginica | 5.8 | 6.588
 virginica | 7.1 | 6.588
...

Now the average length is specific to the species. With the help of DISTINCT and by
omitting the individual length, you can get a list of the averages per species:

SELECT DISTINCT species,
 avg(sepal_length_cm) OVER(PARTITION BY species) AS avgsepal
FROM memory.default.iris;
 species | avgsepal
------------+----------
 setosa | 5.006
 virginica | 6.588
 versicolor | 5.936
(3 rows)

Window Functions | 191

The window functions in Presto support all aggregate functions as well as numerous
window-specific functions:

SELECT DISTINCT species,
 min(sepal_length_cm) OVER(PARTITION BY species) AS minsepal,
 avg(sepal_length_cm) OVER(PARTITION BY species) AS avgsepal,
 max(sepal_length_cm) OVER(PARTITION BY species) AS maxsepal
FROM memory.default.iris;
 species | minsepal | avgsepal | maxsepal
------------+----------+----------+----------
 virginica | 4.9 | 6.588 | 7.9
 setosa | 4.3 | 5.006 | 5.8
 versicolor | 4.9 | 5.936 | 7.0
(3 rows)

Check out the Presto documentation for more details (see “Documentation” on page
13).

Lambda Expressions
An advanced concept for working with array elements is the use of lambda expres‐
sions in SQL statements. If you have a programming background, you might be famil‐
iar with them in terms of syntax, or you may know these expressions by other names
such as lambda functions, anonymous functions, or closures.

A number of array functions, such as zip_with, support the use of lambda expres‐
sions. The expression simply defines a transformation from an input value to an out‐
put value separated by ->:

x -> x + 1
(x, y) -> x + y
x -> IF(x > 0, x, -x)

Other functions commonly used with lambda expressions are transform , filter,
reduce , array_sort, none_match, any_match, and all_match.

Have a look at this example:

SELECT zip_with(ARRAY[1, 2, 6, 2, 5],
 ARRAY[3, 4, 2, 5, 7],
 (x, y) -> x + y);

[4, 6, 8, 7, 12]

As you can see, the lambda expression is simple yet powerful. It adds the nth elements
from the two arrays, creating a new array with the sums. Basically, an iteration over
both arrays takes place, and the function is called in each iteration, all without need‐
ing to write any code for looping through the array data structure.

192 | Chapter 9: Advanced SQL

Geospatial Functions
The SQL support of Presto expands beyond standard SQL, and includes a significant
set of functionality in the realm of geospatial analysis. As with other SQL support,
Presto aligns closely with relevant standard and common usage across other tools.

In the case of geospatial functions, Presto uses the ST_ prefix supporting the SQL/MM
specifications and the Open Geospatial Consortium’s (OGC) OpenGIS Specifications.

Because of the large scope of the geospatial support, you get only a glimpse in this
section.

Presto supports numerous constructors to create geospatial objects from source, for
example:

• ST_GeometryFromText(varchar) -> Geometry

• ST_GeomFromBinary(varbinary) -> Geometry

• ST_LineFromText(varchar) -> LineString

• ST_LineString(array(Point)) -> LineString

• ST_Point(double, double) -> Point

• ST_Polygon(varchar) -> Polygon

These objects can then be used in the many, many functions to compare locations and
other aspects:

• ST_Contains(Geometry, Geometry) -> boolean

• ST_Touches(Geometry, Geometry) -> boolean

• ST_Within(Geometry, Geometry) -> boolean

• ST_Length(Geometry) -> double

• ST_Distance(Geometry, Geometry) -> double

• ST_Area(SphericalGeography) -> double

The geospatial support in Presto is detailed in the Presto documentation (see “Docu‐
mentation” on page 13). We strongly suggest you check it out if you are dealing with
geospatial data in your use of Presto.

Geospatial Functions | 193

Prepared Statements
Prepared statements are a useful approach to be able to run the same SQL statement
with different input parameter values. This allows reuse, simplifies repeated usage for
users, and creates cleaner, better maintainable code. Prepared statements are queries
that are saved in the Presto session for the user.

Use and creation of prepared statements are separated into two steps. The PREPARE
statement is used to create the statement and make it available for repeated use in the
session:

PREPARE example
FROM SELECT count(*) FROM hive.ontime.flights_orc;

The EXECUTE command can be used to run the query one or multiple times:

EXECUTE example;
 _col0

 166628027
(1 row)

Prepared statements can support parameter values to be passed at execution time:

PREPARE delay_query FROM
SELECT dayofweek,
 avg(depdelayminutes) AS delay
FROM flights_orc
WHERE month = ?
AND origincityname LIKE ?
GROUP BY dayofweek
ORDER BY dayofweek;

Using the query with parameters requires you to pass them along for the execution in
the correct order after the USING keyword:

EXECUTE delay_query USING 2, '%Boston%';
 dayofweek | delay
-----------+--------------------
 1 | 10.613156692553677
 2 | 9.97405624214174
 3 | 9.548045977011494
 4 | 11.822725778003647
 5 | 15.875475113122173
 6 | 11.184173669467787
 7 | 10.788121285791464
(7 rows)

194 | Chapter 9: Advanced SQL

Difference Between PREPARE Statement in RDBMSs and Presto
Using PREPARE in other relational database systems has a purpose more than just con‐
venience of executing similar queries with different parameter values. Many systems
may actually parse and plan the SQL during the PREPARE statement. Then during the
EXECUTE command, the values are passed to the system and bound to the execution
plan operators. For transaction systems, this is often an important optimization since
it has to parse and plan the query only once for many executions, even with different
values. This is the original purpose behind prepared statements.

Another common example of this is INSERT queries, where you want to insert a lot of
new values as quickly as possible. PREPARE eliminates the overhead of planning for
each insert.

Currently, Presto does not implement this optimization, and the query and parse are
planned for each EXECUTE. Given the nature of Presto’s main use case, it’s not as
important of an optimization to be concerned about. Prepared statements were origi‐
nally introduced into Presto for the JDBC and ODBC drivers, since tools may rely on
the functionality.

The DESCRIBE command can be useful for understanding prepared statements with
the DESCRIBE INPUT and DESCRIBE OUTPUT commands. These commands are used
internally by the JDBC and ODBC drivers for metadata information and error-
handling purposes:

DESCRIBE INPUT delay_query;
 Position | Type
----------+---------
 0 | integer
 1 | varchar
(2 rows)

DESCRIBE OUTPUT delay_query;
 Column Name | Catalog | Schema | Table | Type | Type Size | Aliased
-------------+---------+--------+-------------+---------+-----------+--------
 dayofweek | hive | ontime | flights_orc | integer | 4 | false
 delay | | | | double | 8 | true
(2 rows)

When you exit the Presto session, the prepared statements are automatically deallo‐
cated. You can manually remove the prepared statement with DEALLOCATE PREPARE:

DEALLOCATE PREPARE delay_query;
DEALLOCATE

Prepared Statements | 195

Conclusion
Congratulations, you made it! This chapter is certainly pretty deep in terms of docu‐
menting the SQL support and processing in Presto. This is a central feature of Presto
and, as such, very important. And you did not even learn all the details. Make sure
you refer to the official documentation described in “Documentation” on page 13 for
the latest and greatest information, including a full list of all functions and operators
and lots more details about all of them.

Understanding the depth of SQL support hopefully really gets you into the idea of
running Presto in production to bring the benefits to your users. In the next part of
the book, you learn more about what is involved in terms of security, monitoring, and
more. And you get to find out examples of applications to use with Presto and some
information about real-world use in other organizations and companies.

With the knowledge from the last two chapters about the SQL support in Presto, you
can now go back to Chapter 4 and learn more about query planning and optimiza‐
tions. Or you can advance to the next part of this book to learn more about Presto use
in production, integrations with Presto, and other users.

196 | Chapter 9: Advanced SQL

PART III

Presto in Real-World Uses

So far you’ve gotten an introduction to Presto, learned how to install it for production
use, learned how to hook up data sources with different connectors, and saw how
powerful the SQL support is.

In this third part, you learn other aspects of using Presto in production, such as secu‐
rity and monitoring, and you get to explore applications that can be used together
with Presto to provide tremendous value for your users.

Last but not least, you hear about other organizations and their use of Presto.

CHAPTER 10

Security

Deploying Presto at scale, discussed in Chapter 5, is an important step toward pro‐
duction usage. In this chapter, you learn more about securing Presto itself as well as
the underlying data.

In a typical Presto cluster deployment and use, you can consider securing several
aspects:

• Transport from user client to the Presto coordinator
• Transport within the Presto cluster, between coordinator and workers
• Transport between the Presto cluster and each data source, configured per

catalog
• Access to specific data within each data source

In Figure 10-1, you can see how the different network connections of Presto need to
be secured. The connection to your client—for example, Presto CLI or an application
using the JDBC driver—needs to be secured. The traffic within the cluster needs to be
secured. And the connections with all the different data sources need to be secured.

Let’s explore these needs in more detail in the following sections, starting with
authenticating to Presto as a user.

199

Figure 10-1. Network connections of Presto usage to secure

Authentication
Authentication is the process of proving an identity to a system. Authentication is
essential to any secure system. A variety of authentication methods are supported by
computer systems, including Kerberos, password with Lightweight Directory Access
Protocol (LDAP), and certificate authentication. It is up to each system to support the
particular authentication method. In Presto, clients commonly authenticate to the
Presto cluster via one of following methods:

• Password via LDAP—see details that follow
• Certificates—see “Certificate Authentication” on page 219
• Kerberos—see “Kerberos” on page 222

By default, no authentication is configured in Presto. Anyone who can access the
coordinator can connect and therefore issue queries and perform other operations. In
this chapter, you learn details about LDAP and certificate authentication mechanisms,
since they are the most commonly used.

However, authentication is just one piece. Once the principal is authenticated, they
are assigned the privileges that determine what the user is able to do. What you can
do is referred to as authorization and is governed by the SystemAccessControl and
ConnectorAccessControl. We describe this in more detail in “Authorization” on page
203. For now, let’s assume that once authenticated, the user can perform any action.
By default, this is true for accessing anything at the system level, such as querying the
system catalog.

200 | Chapter 10: Security

Password and LDAP Authentication
Password authentication is an authentication method you probably use every day. By
providing a username and password to the system, you are proving who you say you
are by providing something you know. Presto supports this basic form of authentica‐
tion by using its password authenticator. The password authenticator receives the
username and password credentials from the client, validates them, and creates a
principal. The password authenticator is designed to support custom password
authenticators deployed as a plug-in in Presto.

Currently, password authentication supported by Presto uses the LDAP authenticator,
and therefore an LDAP service.

Password file authentication is a less commonly used, simple, and
supported authentication mechanism.

LDAP stands for Lightweight Directory Access Protocol, an industry-standard applica‐
tion protocol for accessing and managing information in a directory server. The data
model in the directory server is a hierarchical data structure that stores identity infor‐
mation. We won’t elaborate on too many more details about what LDAP is or how it
works. If you are interested in learning more, there is plenty of information available
in books or on the web.

When using the LDAP authenticator, a user passes a username and password to the
Presto coordinator. This can be done from the CLI, JDBC driver, or any other client
that supports passing the username and password. The coordinator then validates
these credentials with an external LDAP service and creates the principal from the
username. You can see a visualization of this flow in Figure 10-2. To enable LDAP
authentication with Presto, you need to add to the config.properties file on the Presto
coordinator:

http-server.authentication.type=PASSWORD

By setting the authentication type to PASSWORD, we are telling the Presto coordinator
to use the password authenticator to authenticate.

In addition, you need to configure the LDAP service with the additional file
password-authenticator.properties in the etc directory:

password-authenticator.name=ldap
ldap.url=ldaps://ldap-server:636
ldap.user-bind-pattern=${USER}@example.com

Authentication | 201

https://ldap.com

Figure 10-2. LDAP authentication to Presto using an external LDAP service

The password-authenticator.name specifies to use the LDAP plug-in for the pass‐
word authenticator. The following lines configure the LDAP server URL and the pat‐
tern to locate the user record. The preceding bind pattern is an example usage with
Active Directory. Other LDAP servers or configurations define a user ID (UID):

ldap.user-bind-pattern=uid=${USER},OU=people,DC=example,DC=com

In LDAP, several operation types interact with the LDAP directory, such as add,
delete, modify, search, and bind. Bind is the operation used to authenticate clients to
the directory server and is what Presto uses for supporting LDAP authentication. In
order to bind, you need to supply identification and proof of identity such as a pass‐
word. LDAP allows for different types of authentication, but user identity, also known
as the distinguished name, and password is the main supported method by Presto for
LDAP authentication.

A secondary method, which was recently added, is to authenticate and authorize with
a LDAP service user. Check the Presto documentation for configuration tips.

Presto requires using secure LDAP, which is referred to as LDAPS.
Therefore, you need to make sure you have TLS enabled on your
LDAP server. In addition, ensure that the URL for the ldap-url
property uses ldaps:// and not ldap://. Because this communi‐
cation occurs over TLS, you need to import the LDAP server TLS
certificate to the truststore used by the Presto coordinator. Or if the
LDAP server is using a certificate signed by a certificate authority
(CA), you need to make sure that the CA chain is in the truststore.
To securely use the LDAP authenticator, you also need to configure
HTTPS access to the Presto coordinator. This ensures that the
password sent from the client is not in clear text over an unsecure
network. We discuss this setup in “Encryption” on page 209.

202 | Chapter 10: Security

Once the LDAP configuration is in place, you can test it with the Presto CLI:

presto --user matt --password

Specifying --password causes the CLI to prompt you to enter the password. When
you configure the LDAP password authenticator, you have set the user bind pattern.

When the username and password are passed to the Presto coordinator from the
client, the CLI in our example, Presto replaces this username in the bind pattern and
sends this as a security principal, and the password as the security credentials, as part
of the bind request for LDAP. In our example, the principal used to match the distin‐
guished name in the directory structure is uid=matt,OU=people,DC=exam

ple,DC=com. Each entry in the LDAP directory may consist of multiple attributes.
One such attribute is userPassword, which the bind operation uses to match the
password sent.

Presto can further restrict access based on group memberships. You learn more about
the importance of groups in the following authorization sections. By using groups,
you can assign privileges to a group, so the users in that group inherit all the privi‐
leges of that group rather than having to manage privileges individually. Say,
for example, you want to allow only people in the engineering group to authenticate
with Presto. In our example, we want users matt and maria to be able to
authenticate to Presto, but not user jane.

To further restrict users based on group membership, Presto allows you to specify
additional properties in the password-authenticator.properties file.

ldap.user-base-dn=OU=people,DC=example,DC=com

ldap.group-auth-pattern=(&(objectClass=inetOrgPerson)(uid=${USER})(memberof=
CN=developers,OU=groups,DC=example,DC=com))

In our example, the preceding filter restricts users from the base distinguished name
and allows only users who belong to the developers group in LDAP. If user jane
tries to authenticate, the bind operation succeeds since jane is a valid user, but the
user is filtered out of the results because she does not belong to the developers
group.

Authorization
In the previous section you learned about authentication, or proving to Presto who
you are. However, in an environment with many users and sensitive data, you do not
want any user who can authenticate to access any data.

To restrict access, you need to configure authorization of what a user can do. Let’s first
examine the SQL model in Presto in terms of what access controls exist. Then you
learn how to control access to Presto at the system and connector level.

Authorization | 203

System Access Control
System access control enforces authorization at the global Presto level and allows you
to configure access for catalogs and rules for the principals used.

Lower-level rights and restrictions within a catalog have to be configured with con‐
nector access control; see “Connector Access Control” on page 207.

As you learned in the authentication section, security principals are the entity used to
authenticate to Presto. The principal may be an individual user or a service account.
Presto also separates the principal for authentication from the user who is running
queries. For example, multiple users may share a principal for authenticating, but run
queries as themselves. By default, Presto allows any principal who can authenticate to
run queries as anyone else:

$ presto --krb5-principal alice@example.com --user bob

This is generally not what you would want to run in a real environment, since it
potentially elevates the access granted to one user, bob, beyond his authorization.
Changing this default behavior requires additional configuration. Presto supports a
set of built-in system access control configurations.

By default, Presto allows any authenticated user to do anything. This is the least
secure and not recommended when deploying in a production environment. While it
is the default, you can set it explicitly by creating access-control.properties within the
etc directory.

access-control.name=allow-all

Read-only authorization is slightly more secure in that it allows only any operation
that is reading data or metadata. This includes SELECT queries, but not CREATE,
INSERT, or DELETE queries:

access-control.name=read-only

Using this method to set access control to read-only is a very fast,
simple, and effective way to reduce risk from Presto usage to the
underlying data. At the same time, read access is completely suit‐
able to analysis usage, and you can easily create a dedicated Presto
cluster with read-only access to allow anybody in your company
access to a large amount of data for analysis, troubleshooting, or
simply exploration or learning more about Presto.

To configure system access control beyond simple allow-all or read-only, you can
use a file-based approach. This allows you to specify access control rules for catalog
access by users and what users a principal can identify as. These rules are specified in
a file that you maintain.

204 | Chapter 10: Security

When using file-based system access control, all access to catalogs is denied unless
there is a matching rule for a user that explicitly gives them permission. You can
enable this in the access-control.properties file in the etc configuration directory:

access-control.name=file
security.config-file=etc/rules.json

The security.config-file property specifies the location of the file containing the
rules. It must be a JSON file using the format detailed in the following code. Best
practice is to keep it in the same directory as all other configuration files:

{
 "catalogs": [
 {
 "user": "admin",
 "catalog": "system",
 "allow": true
 },
 {
 "catalog": "hive",
 "allow": true
 },
 {
 "user": "alice",
 "catalog": "postgresql",
 "allow": true
 }
 {
 "catalog": "system",
 "allow": false
 }
]
}

Rules are examined in order, and the first rule that matches is used. In this example,
the admin user is allowed access to the system catalog, whereas all other users are
denied because of the last rule. We mentioned earlier that all catalog access is denied
by default unless there is a matching rule. The exception is that all users have access
to the system catalog by default.

The example file also grants access to the hive catalog for all users, but only the user
alice is granted access to the postgresql catalog.

System access controls are very useful for restricting access. How‐
ever, they can be used to configure access only at the catalog level.
More fine-grained access cannot be configured with it.

Authorization | 205

As we mentioned earlier, authenticated principal can run queries as any user by
default. This is generally not desirable, as it allows users to potentially access data as
someone else. If the connector has implemented a connector access control, it means
that a user can authenticate with a principal and pretend to be another user to access
data they should not have access to. Therefore, it is important to enforce an appropri‐
ate matching between the principal and the user running the queries.

Let’s say we want to set the username to that of the LDAP principal:

{
 "catalogs": [
 {
 "allow": "all"
 }
],
 "principals": [
 {
 "principal": "(.*)",
 "principal_to_user": "$1",
 "allow": "all"
 }
]
}

This can be further extended to enforce the user to use exactly their Kerberos princi‐
pal name. In addition, we can match the username to a group principal that may be
shared:

 "principals": [
 {
 "principal": "([^/]+)/?.*@example.com",
 "principal_to_user": "$1",
 "allow": "all"
 },
 {
 "principal": "group@example.com",
 "user": "alice|bob",
 "allow": "all"
 }
]

Therefore, if you want a different behavior, you must override the rule; in this case,
the users bob and alice can use the principal group@example.com as well as their
own principals, bob@example.com and alice@example.com.

206 | Chapter 10: Security

Connector Access Control
Recall the set of objects Presto exposes in order to query data. A catalog is the config‐
ured instance of a connector. A catalog may consist of a set of namespaces called sche‐
mas. And, finally, the schemas contain a collection of tables with columns using
specific data types and rows of data. With connector access control, Presto allows you
to configure fine-grained rights within a catalog.

Presto supports the SQL standard GRANT to grant privileges on tables and views to a
user or role, and also to grant user membership to a role. Today, Presto supports a
subset of privileges defined by the SQL standard. In Presto, you can grant the follow‐
ing privileges to a table or view:

SELECT

Equivalent to read access

INSERT

Equivalent to create access, or write access for new rows

DELETE

Equivalent to delete access, or removal of rows

As of this writing, only the Hive connector supports roles and
grants. Because this depends on the connector implementation,
each connector needs to implement the ConnectorAccessControl
to support this SQL standard functionality.

Let’s look at an example:

GRANT SELECT on hive.ontime.flights TO matt;

The user running this query is granting to user matt the SELECT privilege on table
flights that is in the ontime schema of the hive catalog.

Optionally, you can specify the WITH GRANT OPTION that allows the grantee matt to
grant the same privileges to others. You can also specify more than one privilege by
separating commas or by specifying ALL PRIVILEGES to grant SELECT, INSERT, and
DELETE to the object:

GRANT SELECT, DELETE on hive.ontime.flights TO matt WITH GRANT OPTION;

Authorization | 207

To grant privileges, you must possess the same privileges and the
GRANT OPTION. Or you must be an owner of the table or view, or
member of the role that owns the table or view. At the time of this
writing, there is no way in Presto to alter the owner of the object,
so that must be done by the underlying data source. For example,
you can run the following SQL statement:

ALTER SCHEMA ontime SET OWNER USER matt;

A role consists of a collection of privileges that can be assigned to a user or another
role. This makes administering privileges for many users easier. By using roles, you
avoid the need to assign privileges directly to users. Instead, you assign the privileges
to a role, and then users are assigned to that role and inherit those privileges. Users
can also be assigned multiple roles. Using roles to manage privileges is generally the
best practice.

Let’s reuse our example of the flights table and use roles:

CREATE ROLE admin;
GRANT SELECT, DELETE on hive.ontime.flights TO admin;
GRANT admin TO USER matt, martin;

Now let’s say you wish to remove privileges from a user. Instead of having to remove
all the privileges on an object granted to a user, you can simply remove the role
assignment from the user:

REVOKE admin FROM USER matt;

In addition to removing users from a role, you can also remove privileges from a role
so that all users with the role no longer have that privilege:

REVOKE DELETE on hive.ontime.flights FROM admin;

In this example, we revoked the DELETE privileges on the flights table from the
admin role. However, the admin role and its members still have the SELECT privilege.

Users may belong to multiple roles, and those roles may have distinct or an intersec‐
tion of privileges. When a user runs a query, Presto examines the privileges that the
user has either assigned directly or through the roles. If you wish to use only the priv‐
ileges of a single role you belong to, you can use the SET ROLE command. For exam‐
ple, say you belong to both an admin role and the developer role, but you want to be
using only the privileges assigned to the developer role:

SET ROLE developer;

You can also set the role to ALL so that Presto examines your privileges for every role
you belong to. Or you can set it to NONE.

208 | Chapter 10: Security

Encryption
Encryption is a process of transforming data from a readable form to an unreadable
form, which is then used in transport or for storage, also called at rest. At the receiver
end, only authorized users are able to transform data back to a readable form. This
prevents any malicious attacker who intercepts the data from being able to read it.
Presto uses standard cryptographic techniques to encrypt data in motion and at rest,
and you can see a comparison between the plain text and the encrypted version in
Table 10-1.

Table 10-1. Comparison of an equivalent text in plain and encrypted format

Plain text Encrypted text

SSN: 123-45-6789 5oMgKBe38tSs0pl/Rg7lITExIWtCITEzIfSVydAHF8Gux1cpnCg=

Encrypted data in motion includes the following data transfers and is displayed in
Figure 10-3:

• Between the client, such as a JDBC client or the Presto CLI, and the Presto coor‐
dinator (at left in the figure)

• Within the Presto cluster, between the coordinator and workers (center)
• From the data sources, configured in the catalogs, to the workers and the coordi‐

nator in the cluster (at right)

Figure 10-3. Encryption options for data in transit

Encryption | 209

Encryption of data at rest includes the following locations and is displayed in
Figure 10-4:

• Data sources, so outside the Presto cluster (right)
• Storage on the workers and/or coordinator used for the spilling to disk function‐

ality, so inside the Presto cluster (left)

Figure 10-4. Encryption options for data at rest

Each of these can be configured in Presto independently. S3 is used as an example for
a connected data source.

These different encryption usages can be combined. For example, you can configure
Presto to encrypt client-to-coordinator communication and intercluster communica‐
tion, but leave data at rest unencrypted and therefore not secured. Or you may
choose to configure Presto only for encrypted client-to-coordinator communication.

While each combination is possible to configure, some combinations do not make
much sense. For example, configuring only intercluster communication but leaving
client-to-coordinator communication unencrypted does not make sense because it
leaves any data accessed by queries from a Presto client open to attacks.

As you’ve learned, external and internal communication in Presto happens exclu‐
sively over HTTP. To secure communication between the client and coordinator and
intercluster communication, Presto can be configured to use Transport Layer Security
(TLS) on top of HTTP, referred to as HTTPS. TLS is a cryptographic protocol for
encrypting data over a network, and HTTPS uses TLS to secure the HTTP protocol.

TLS is the successor to Secure Sockets Layer (SSL), and sometimes
the terms are used interchangeably. SSL is an older protocol with
known vulnerabilities and is considered insecure. Because of the
prominence and name recognition of SSL, when someone refers to
SSL, they often are referring to TLS.

You are probably familiar with HTTPS from visiting websites because most sites use
HTTPS now. For example, if you are logged into your online bank account, HTTPS is
used to encrypt data between the web server and your web browser. On modern web
browsers, you typically see the padlock icon in the address line, indicating the data

210 | Chapter 10: Security

transfer is secured and the server you are connected to is identical to the one identi‐
fied in the certificate.

How Does HTTPS Work?
While this chapter is not intended to give a deep dive on the technical details of TLS,
you should understand the basic concepts in order to understand how HTTPS works
with Presto. We have discussed how Presto uses HTTPS to use TLS to encrypt the
data in motion. Any malicious user eavesdropping on the network and intercepting
data being processed in Presto won’t be able to view the original unencrypted data.

The process of setting up this secured communication occurs when a user connects to
a web page from their browser, and the server where the web page is hosted sends a
TLS certificate to start the TLS handshake process. The TLS certificate relies on
public-key (asymmetric) cryptography and is used during the handshake process to
establish a secret key used for symmetric encryption during the session. During the
handshake, both sides agree on the encryption algorithms to use and verify that the
TLS certificate is authentic and the server is who they say they are. They generate ses‐
sion secret keys to be used for encrypting data after the handshake. Once the hand‐
shake is completed, data remains encrypted between the two, and the secure
communication channel, displayed in Figure 10-5, is established for the duration of
the session.

Figure 10-5. Secured communication between a client web browser and web server using
TLS

Encrypting Presto Client-to-Coordinator Communication
It’s important to secure the traffic between the client and Presto for two reasons. First,
if you are using LDAP authentication, the password is in clear text. And with Ker‐
beros authentication, the SPNEGO token can be intercepted as well. Additionally, any
data returned from queries is in plain text.

Understanding the lower-level details of the TLS handshake for encryption algo‐
rithms is not crucial to understanding how Presto encrypts network traffic. But it is
important to understand more about certificates, since you need to create and config‐
ure certificates for use by Presto. Figure 10-5 depicts communications between a

Encryption | 211

client web browser and web server secured over HTTPS. This is exactly how HTTPS
communication is used between the Presto coordinator and a Presto client such as
the Presto Web UI, the Presto CLI, or the JDBC driver, displayed in Figure 10-6.

Figure 10-6. Secured communication over HTTP between Presto clients and the Presto
coordinator

A TLS certificate relies on public-key (asymmetric) cryptography using key pairs:

• A public key, which is available to anyone
• A private key, which is kept private by the owner

Anyone can use the public key to encrypt messages that can be decrypted only by
those who have the private key. Therefore, any message encrypted with the public key
should be secret, as long as only the owner of the key pair does not share or have its
private key stolen. A TLS certificate contains information such as the domain the cer‐
tificate was issued for, the person or company it was issued to, the public key, and sev‐
eral other items. This information is then hashed and encrypted using a private key.
The process of signing the certificate creates the signature to include in the certificate.

These certificates are often signed by a trusted certificate authority such as DigiCert
or GlobalSign. These authorities verify that the person requesting a certificate to be
issued is who they say they are and that they own the domain as stated in the certifi‐
cate. The certificate is signed by the authority’s private key, for which their public keys
are made widely available and typically installed by default on most operating systems
and web browsers.

The process of signing the certificate is important during the TLS handshake to verify
authenticity. The client uses the public key of the pair to decrypt the signature and
compare to the content in the certificate to make sure it was not tampered with.

Now that you understand the basics of TLS, let’s look at how we can encrypt data
between the Presto clients and coordinator. To enable HTTPS on the Presto coordi‐
nator, you need to set additional properties in the config.properties file (see
Table 10-2).

212 | Chapter 10: Security

Table 10-2. Configuration properties for HTTPS communication

Property Description

http-server.https.enabled Set this to true to enable HTTPS for Presto. Defaults to false.

http-server.http.enabled Set this to false to disable HTTP for Presto. Defaults to true.

http-server.https.port Specify the HTTPS port to use. 8443 is a common default port for HTTPS for Java application
servers.

http-server.https.keystore.path Specify the path to the Java keystore file that stores the private key and certificate used by
Presto for TLS.

http-server.https.keystore.key Specify the Java keystore password Presto needs to access the keystore.

Even though you are configuring Presto to use HTTPS, by default
HTTP is still enabled as well. Enabling HTTPS does not disable
HTTP. If you wish to disable HTTP access, this needs to be config‐
ured. However, you may want to keep HTTP enabled until you
have completed configuring the secured Presto environment. Test‐
ing how or if something works over HTTP may be a good way to
debug an issue if you run into complications during configurations.

Take, for example, the following lines to add to your config.properties:
http-server.https.enabled=true
http-server.https.port=8443
http-server.https.keystore.path=/etc/presto/presto_keystore.jks
http-server.https.keystore.key=slickpassword

Remember to restart the Presto coordinator after you update the properties file.

Java Keystores and Truststores
While configuring encryption, you need to work with Java keystores. A keystore is a
repository used to store cryptographic keys, X.509 certificate chains, and trusted cer‐
tificates. In Presto, the keystore can be used as either a keystore or truststore. There is
no difference in the implementation or tools using these stores. The major difference
is what is stored in the keystore and truststore and how each is used. A keystore is
used when you need to prove your identity, while the truststore is used when you
need to confirm another identity.

For Presto, the Presto coordinator needs a keystore that contains the private key and
signed certificate. When the Presto client connects, Presto presents this certificate to
the client as part of the TLS handshake.

The Presto client, such as the CLI, uses a truststore that contains the certificates
needed to verify the authenticity of the certificate presented by the server. If the
Presto coordinator certificate is signed by a certificate authority (CA), then the trust‐
store contains the root and intermediate certificates. If you are not using a CA, the

Encryption | 213

truststore contains the same Presto TLS certificate. Self-signed certificates simply
mean that the certificate is signed by the private key of the public key in the certifi‐
cate. These are far less secure, as an attack can spoof a self-signed certificate as part of
a man-in-the-middle attack. You must be sure of the security of the network and
machine the client is connecting to when using self-signed certificates. Using self-
signed certificates is more acceptable for securing the intercluster communication
since the whole cluster is typically located within a secured network.

What Is an X.509 Certificate?
X.509 is the standard that defines the format of a public-key certificate such as the
ones we want to generate to secure Presto. The certificate includes the domain name
it is issued for, the person of organization it is issued to, the issue date and expiration,
the public key, and the signature. The certificate is signed by a CA, or is self-signed.
You can learn more from the official standard.

Creating Java Keystores and Java Truststores
The Java keytool, a command-line tool for creating and managing keystores and
truststores, is available as part of any Java Development Kit (JDK) installation. Let’s
go over a simple example for creating a Java keystore and truststore. For simplicity,
we use self-signed certificates.

Let’s first create the keystore to be used by the Presto coordinator. The following key
tool command creates a public/private key pair and wraps the public key in a certifi‐
cate that is self-signed:

$ keytool -genkeypair \
 -alias presto_server \
 -dname CN=*.example.com \
 -validity 10000 -keyalg RSA -keysize 2048 \
 -keystore keystore.jks \
 -keypass password
 -storepass password

The generated keystore.jks file needs to be used on the server and specified in the
http-server.https.keystore.path property. Similar usage applies for the store
pass password in the http-server.https.keystore.key property.

In this example, you are using a wildcard certificate. We specify the common name
(CN) to be *.example.com. This certificate can be shared by all the nodes on the
Presto cluster, assuming they use the same domain; this certificate works with coordi
nator.example.com, worker1.example.com, worker2.example.com, and so on. The

214 | Chapter 10: Security

https://www.itu.int/rec/T-REC-X.509

disadvantage to this approach is that any node under the example.com domain can
use the certificate.

You can limit the subdomains by using a subject alternative name (SubjectAltName),
where you list the subdomains. This allows you to create a single certificate to be
shared by a limited, specific list of hosts. An alternative approach is to create a certifi‐
cate for each node, requiring you to explicitly define the full domain for each. This
adds an administrative burden and makes it challenging when scaling a Presto clus‐
ter, as the new nodes require certificates bound to the full domain.

When connecting a client to the coordinator, the coordinator sends its certificate to
the client to verify its authenticity. A truststore is used to verify the authenticity by
containing the coordinator certificate if self-signed, or a certificate chain if signed by
a CA. Later, we discuss how to use a certificate chain of a CA. Because the keystore
also contains the certificate, you could simply copy the keystore to the client machine
and use that as the truststore. However, that is not secure, as the keystore also con‐
tains the private key that we want to keep secret. To create a custom truststore, you
need to export the certificate from the keystore and import it into a truststore.

First, on the coordinator where your keystore was created, you export the certificate:

$ keytool --exportcert \
 -alias presto_server \
 -file presto_server.cer \
 -keystore keystore.jks \
 -storepass password

This command creates a presto_server.cer certificate file. As a next step, you use that
file to create the truststore:

$ keytool --importcert \
 -alias presto_server \
 -file presto_server.cer \
 -keystore truststore.jks \
 -storepass password

Since the certificate is self-signed, this keytool command prompts you to confirm
that you want to trust this certificate. Simply type yes and the truststore.jks is created.
Now you can safely distribute this truststore to any machine from which you use a
client to connect the coordinator.

Now that we have the coordinator enabled with HTTPS using a keystore and we’ve
created a truststore for the clients, we can securely connect to Presto such that the
communication between the client and coordinator is encrypted. Here is an example
using the Presto CLI:

$ presto --server https://presto-coordinator.example.com:8443 \
 --truststore-path ~/truststore.jks \
 --truststore-password password

Encryption | 215

Encrypting Communication Within the Presto Cluster
Next let’s look at how to secure the communication between the workers, and the
workers and the coordinator, all within the Presto cluster, by using HTTP over TLS
again as shown in Figure 10-7.

While the client-to-coordinator communication may be over an untrusted network,
the Presto cluster is generally deployed on a more secure network, making secured
intercluster communication more optional. However, if you’re concerned about a
malicious attacker being able to get onto the network of the cluster, communication
can be encrypted.

As with securing client-to-coordinator communication, cluster internal communica‐
tion also relies on the same keystore. This keystore you created on the coordinator
must be distributed to all worker nodes.

Figure 10-7. Secured communication over HTTPS between nodes in the Presto cluster

The same method of performing the TLS handshake to establish trust between the
client and server, and create an encrypted channel, works for the intercluster commu‐
nication. Communication in the cluster is bidirectional, meaning a node may act as a
client sending the HTTPS request to another node, or a node can act as a server when
it receives the request and presents the certificate to the client for verification.
Because each node can act as both client and server for different connections, it needs
a keystore that contains both the private key and the public key wrapped in the
certificate.

All nodes need to enable HTTPS in config.properties, including for internal
communication:

http-server.https.enabled=true
http-server.https.port=8443

internal-communication.https.required=true
discovery.uri=https://coordinator.example.com:8443

216 | Chapter 10: Security

internal-communication.https.keystore.path=/etc/presto/presto_keystore.jks
internal-communication.https.keystore.key=slickpassword

Remember to restart the workers after you update the properties file. Now you have
entirely secured the internal and external communication and secured it against
eavesdroppers on the network trying to intercept data from Presto.

Once you have everything working, it’s important to disable HTTP
by setting http-server.http.enabled=false in config.properties;
otherwise, a user can still connect to the cluster using HTTP.

Certificate Authority Versus Self-Signed Certificates
When you try out Presto for the first time and work to get it configured securely, it’s
easiest to use a self-signed certificate. In practice, however, it may not be allowed in
your organization as they are much less secure and susceptible to attacks in certain
situations. Therefore, you may use a certificate that was digitally signed by a CA.

Once you have created the keystore, you need to create a certificate signing request
(CSR) to send to the CA to get the keystore signed. The CA verifies you are who you
say you are and issues you a certificate signed by them. The certificate is then impor‐
ted into your keystore. This CA signed certificate is presented to the client instead of
the original self-signed one.

An interesting aspect is related to the use of the Java truststore. Java provides a default
truststore that may contain the CA already. In this case, the certificate presented to
the client can be verified by the default truststore. Using the Java default truststore
can be cumbersome because it may not contain the CA. Or perhaps your organiza‐
tion has its own internal CA for issuing organizational certifications to employees
and services. So if you’re using a CA, it is still recommended that you create your own
truststore for Presto to use. However, you can import the CA certificate chain instead
of the actual certificates being used for Presto. A certificate chain is a list of two or
more TLS certificates, where each certificate in the chain is signed by the next one in
the chain. At the top of the chain is the root certificate, and this is always self-signed
by the CA itself. It is used to sign the downstream certificates known as intermediate
certificates. When you are issued a certificate for Presto, it is signed by an intermedi‐
ate certificate, which is the first one in the chain. The advantage to this is that, if there
are multiple certificates for multiple Presto clusters or if certificates are reissued, you
don’t need to reimport them into your truststore each time. This reduces the need for
the CA to reissue an intermediate or root certificate.

The scenario in Figure 10-8 shows the use of a certificate issued by a CA. The trust‐
store contains only the intermediate and root certificates of the CA. The TLS

Certificate Authority Versus Self-Signed Certificates | 217

certificate from the Presto coordinator is verified using this certificate chain in the
client truststore.

Figure 10-8. Presto using a certificate issued by a CA

Let’s say you had your Presto certificate signed by a CA. In order for the client to trust
it, we need to create a truststore containing the intermediate and root certificates. As
in the earlier example in which we imported the Presto self-signed certificate, you
perform the same import of the CA certificate chain:

$ keytool --importcert \
 -alias presto_server \
 -file root-ca.cer \
 -keystore truststore.jks \
 -storepass password

After the root CA certificate is imported, you continue to import all necessary inter‐
mediate certificate from the chain:

$ keytool --importcert \
 -alias presto_server \
 -file intermediate-ca.cer \
 -keystore truststore.jks \
 -storepass password

Note that there may be more than a single intermediate certificate and that we’re
using a single one here for simplicity.

218 | Chapter 10: Security

Certificate Authentication
Now that you’ve learned about TLS, certificates, and the related usage of the Java key
tool, you can have a look at using these tools for authenticating clients connecting to
Presto with TLS. This certificate authentication is displayed in Figure 10-9.

As part of the TLS handshake, the server provides the client a certificate so that the
client can authenticate the server. Mutual TLS means that the client, as a part of the
handshake, provides a certificate to the server to be authenticated. The server verifies
the certificate in the same way you have seen the client verify the certificate. The
server requires a truststore that contains the CA chain, or the self-signed certificate
for verification.

Figure 10-9. Certificate authentication for Presto clients

To configure the Presto coordinator for mutual TLS authentication, you need to add
some properties to the config.properties file on the coordinator. Let’s look at a com‐
plete configuration:

http-server.http.enabled=false
http-server.https.enabled=true
http-server.https.port=8443

http-server.https.keystore.path=/etc/presto/presto_keystore.jks
http-server.https.keystore.key=slickpassword

http-server.https.truststore.path=/etc/presto/presto_truststore.jks
http-server.https.truststore.key=slickpassword

node.internal-address-source=FQDN
internal-communication.https.required=true
internal-communication.https.keystore.path=/etc/presto/presto_keystore.jks
internal-communication.https.keystore.key=slickpassword

http-server.authentication.type=CERTIFICATE

Certificate Authentication | 219

The property http-server.authentication indicates the type of authentication to
use. In this case, Presto is using CERTIFICATE authentication. This causes the Presto
coordinator to use the full TLS handshake for mutual authentication. In particular,
the server-side coordinator sends a certificate request message as part of the full TLS
handshake to the client to provide the signed certificate for verification. In addition,
you need to configure the truststore on the coordinator in order to verify the certifi‐
cate presented by the client.

Let’s use our command to connect with the CLI to Presto:

$ presto --server https://presto-coordinator.example.com:8443 \
 --truststore-path ~/truststore.jks \
 --truststore-password password
 --user matt
presto> SELECT * FROM system.runtime.nodes;
Error running command: Authentication failed: Unauthorized

You’ll find that authentication failed, because the client does not use the keystore that
has the certificate to provide the client certificate to the coordinator for mutual
authentication.

You need to modify your command to include a keystore. Note that this keystore is
different from the keystore on the cluster. This keystore specifically contains the key
pair for the client. Let’s first create our keystore on the client side:

$ keytool -genkeypair \
 -alias presto_server \
 -dname CN=matt \
 -validity 10000 -keyalg RSA -keysize 2048 \
 -keystore client-keystore.jks \
 -keypass password
 -storepass password

In this example, you see that we set the CN to user matt. In this case, it’s more than
likely that this is a self-signed certificate or that an organization has its own internal
CA. Let’s specify the client keystore in the CLI command:

$ presto --server https://presto-coordinator.example.com:8443 \
 --truststore-path ~/truststore.jks \
 --truststore-password password
 --keystore-path ~/client-keystore.jks \
 --keystore-password password
 --user matt

presto> SELECT * FROM system.runtime.nodes;
Query failed: Access Denied:
Authenticated user AuthenticatedUser[username=CN=matt,principal=CN=matt]
cannot become user matt

Now that we have authenticated, authorization is failing. Recall that authentication
proves who you are, and authorization controls what you can do.

220 | Chapter 10: Security

In the case of certificate authentication, Presto extracts the subject distinguished
name from the X.509 certificate. This value is used as the principal to compare to the
username. The username defaults to the operating system username unless it is speci‐
fied explicitly using the --user option in the CLI. In this case, the user matt is com‐
pared to the distinguished common name in the certificate CN=matt. One
workaround is to simply pass the option to the CLI as --user CN=matt. Alternatively,
you can leverage the built-in file-based system access control you learned about ear‐
lier for some customization.

First, you need to create a file in the Presto installation directory etc/access-
control.properties, on the Presto coordinator.

access-control.name=file
security.config-file=/etc/presto/rules.json

Next we need to create the rules.json file on the coordinator as the path location
specified in the access-control.properties file and define the mapping from principal to
user to include CN=:

{
 "catalogs": [
 {
 "allow": true
 }
],
 "principals": [
 {
 "principal": "CN=(.*)",
 "principal_to_user": "$1",
 "allow": true
 }
]
}

We are matching a principal regex with a capturing group. We then use that capturing
group to map the principal to the user. In our example, the regex matches CN=matt,
where matt is part of the capturing group to map to the user. Once you create these
files and restart the coordinator, both the certificate authentication and authorization
of that subject principal to the user work:

SELECT * FROM system.runtime.nodes;
-[RECORD 1]+--
node_id | i-0779df73d79748087
http_uri | https://coordinator.example.com:8443
node_version | 312
coordinator | true
state | active
-[RECORD 2]+--
node_id | i-0d3fba6fcba08ddfe
http_uri | https://worker-1.example.com:8443

Certificate Authentication | 221

node_version | 312
coordinator | false
state | active

Kerberos
The network authentication protocol Kerberos is widely used. Support for Kerberos in
Presto is especially critical for users of Presto, who are using the Hive connector (see
“Hive Connector for Distributed Storage Data Sources” on page 93), since Kerberos is
a commonly used authentication mechanism with HDFS and Hive.

The Kerberos documentation can be a useful resource for learning
about the protocol and the related concepts and terms. In this sec‐
tion, we assume that you are sufficiently familiar with these aspects
or that you have gone off and read some of the documentation and
other resources available.

Presto supports clients to authenticate to the coordinator by using the Kerberos
authentication mechanism. The Hive connector can authenticate with a Hadoop clus‐
ter that uses Kerberos authentication.

Similar to LDAP, Kerberos is an authentication protocol, and a principal can be
authenticated using a username and password or a keytab file.

Prerequisites
Kerberos needs to be configured on the Presto coordinator, which needs to be able to
connect to the Kerberos key distribution center (KDC). The KDC is responsible for
authenticating principals and issues session keys that can be used with Kerberos-
enabled services. KDCs typically use TCP/IP port 88.

Using MIT Kerberos, you need to have a [realms] section in the /etc/krb5.conf con‐
figuration file.

Kerberos Client Authentication
To enable Kerberos authentication with Presto, you need to add details to the con‐
fig.properties file on the Presto coordinator. You need to change the authentication
type, configure the location of the keytab file, and specify the user name of the Ker‐
beros service account to use:

http-server.authentication.type=KERBEROS
http.server.authentication.krb5.service-name=presto
http.server.authentication.krb5.keytab=/etc/presto/presto.keytab

222 | Chapter 10: Security

http://web.mit.edu/kerberos
http://web.mit.edu/kerberos

No changes to the worker configuration are required. The worker nodes continue to
connect to the coordinator over unauthenticated HTTP.

To connect to this kerberized Presto cluster, a user needs to set up their keytab file,
their principal, and their krb5.conf configuration file on the client and then use the
relevant parameters for the Presto CLI or the properties for a JDBC connection. You
can find all the details including a small wrapper script in the Presto documentation.

Cluster Internal Kerberos
If you want to secure the cluster internal communication, the Kerberos authentica‐
tion must be enabled on workers, and internal communication needs to be changed
to use SSL/TLS; see “Encrypting Communication Within the Presto Cluster” on page
216. This requires specifying valid Kerberos credentials for the internal
communication.

Presto itself, as well as any users connecting to Presto with Kerberos, need a Kerberos
principal. You need to create these users in Kerberos by using kadmin. In addition, the
Presto coordinator needs a keytab file.

When using Kerberos authentication, client access to the Presto coordinator should
use HTTPS; see “Encrypting Presto Client-to-Coordinator Communication” on page
211.

You can optionally set the Kerberos hostname for the coordinator, if you want Presto
to use this value in the host part of the Kerberos principal instead of the machine’s
hostname. You can also specify an alternate location of the Kerberos configuration
file krb5.conf, different from the default /etc/krb5.conf:

http.server.authentication.krb5.principal-hostname=presto.example.com
http.authentication.krb5.config=/etc/presto/krb5.conf

For securing cluster internal communication with Kerberos, you need to specify valid
Kerberos credentials for the internal communication and enable it:

internal-communication.kerberos.enabled=true

Make sure that you’ve also set up Kerberos on the worker nodes. The Kerberos prin‐
cipal for internal communication is built from http.server.authentication

.krb5.service-name after appending it with the host name of the node where Presto
is running and the default realm from the Kerberos configuration.

Kerberos | 223

Data Source Access and Configuration for Security
Another aspect of securing the data available to Presto users is visible in Figure 10-10.
Each catalog configured in Presto includes the connection string as well as the user
credentials used to connect to the data source. Different connectors and target data
source systems allow different access configurations.

A user first authenticates to the coordinator. The Presto connector issues requests to
the data sources, which typically require authentication as well.

Figure 10-10. Data source security configuration impacting data for users

Authentication from the connectors to the data sources are dependent on the connec‐
tor implementation. In many connector implementations, Presto authenticates as a
service user. Therefore, for any user who runs a query using such a connector, the
query is executed in the underlying system as that service user.

For example, if the user credentials to the target data source do not include the rights
to perform any write operations, you effectively restrict all Presto users to read-only
operations and queries. Similarly, if the user does not have access rights to a specific
schema, database, or even table, Presto usage has the same restrictions.

To provide a more fine-grained access control, you can create several service users
with different permissions. You can then have multiple catalog configurations with
the same connector to the same data source, but using different service users.

Similar to using different service users, you can also create catalogs with different
connections strings. For example, the PostgreSQL connection string includes a data‐
base name, which means you can create different catalogs to separate access to these
databases running on the same PostgreSQL server. The MS SQL Server connections
string allows an optional configuration of a database.

Details such as connection strings, user credentials, and other aspects are discussed in
Chapter 6.

Beyond the schema and database level, you can even push access rights and data con‐
tent configuration all the way down to the database itself. For example, if you want to
limit access to certain columns in a table or certain rows in a table, you can limit

224 | Chapter 10: Security

access to the source tables and instead create views with the desired content. These
are then available in Presto like traditional tables and therefore implement your secu‐
rity. The extreme case of this scenario is the creation of a separate database or data
warehouse using ETL tools, including even Presto itself. These target databases with
the desired data can then be configured for access in Presto with separate catalogs as
well.

If you end up having multiple catalogs defined on your Presto deployment using
some of the preceding logic, and you want to allow access to these catalogs to specific
users, you can take advantage of the system access control discussed in “System
Access Control” on page 204.

A relatively new feature available in some connectors from Presto, as well as some
commercially available connectors, is end-user impersonation. This allows the end-
user credentials in the Presto CLI or other tools to be passed through all the way to
the data source. The access rights in Presto then reflect the configured access rights in
the database.

One common example of data source security configuration is the use of Kerberos
with HDFS and therefore with the Hive connector; see “Hive Connector for Dis‐
tributed Storage Data Sources” on page 93. Let’s look at the details now.

Kerberos Authentication with the Hive Connector
After learning about Kerberos configuration and data source security in general ear‐
lier, let’s now look at the combination of Kerberos, HDFS/Hive, and the Hive
connector.

By default, no authentication is enabled for Hive connector use. However, the con‐
nector does support Kerberos authentication. All you need to do is configure the
connector to work with two services on the Hadoop cluster:

• The Hive metastore Thrift service
• The Hadoop Distributed File System (HDFS)

If your krb5.conf location is different from /etc/krb5.conf, you must
set it explicitly using the java.security.krb5.conf JVM property
in the jvm.config file:

-Djava.security.krb5.conf=/example/path/krb5.conf

Kerberos Authentication with the Hive Connector | 225

Hive Metastore Thrift Service Authentication
In a kerberized Hadoop cluster, Presto connects to the Hive metastore Thrift service
by using Simple Authentication and Security Layer (SASL) and authenticates by using
Kerberos. You can easily enable Kerberos authentication for the metastore service in
your catalog properties file:

hive.metastore.authentication.type=KERBEROS
hive.metastore.service.principal=hive/hive-metastore-host.example.com@EXAMPLE.COM
hive.metastore.client.principal=presto@EXAMPLE.COM
hive.metastore.client.keytab=/etc/presto/hive.keytab

This setting activates the use of Kerberos for the authentication to HMS. It also con‐
figures the Kerberos principal and keytab file location that Presto uses when connect‐
ing to the metastore service. The keytab file must be distributed to every node in the
cluster.

hive.metastore.service.principal can use the _HOST place‐
holder in the value. When connecting to the HMS, the Hive con‐
nector substitutes this with the hostname of the metastore server it
is connecting to. This is useful if the metastore runs on multiple
hosts. Similarly, hive.metastore.client.principal can have the
_HOST placeholder in its value. When connecting to the HMS, the
Hive connector substitutes this with the hostname of the worker
node Presto is running on. This is useful if each worker node has
its own Kerberos principal.

Presto connects as the Kerberos principal specified by the property hive.meta
store.client.principal and authenticates this principal by using the keytab speci‐
fied by the hive.metastore.client.keytab property. It verifies that the identity of
the metastore matches hive.metastore.service.principal.

The principal specified by hive.metastore.client.principal
must have sufficient privileges to remove files and directories
within the hive/warehouse directory. Without this access, only the
metadata is removed, and the data itself continues to consume disk
space. This occurs because the HMS is responsible for deleting the
internal table data. When the metastore is configured to use Ker‐
beros authentication, all HDFS operations performed by the meta‐
store are impersonated. Errors deleting data are silently ignored.

226 | Chapter 10: Security

HDFS Authentication
Enabling Kerberos authentication to HDFS is similar to metastore authentication,
with the following properties in your connectors properties file. When the authenti‐
cation type is KERBEROS, Presto accesses HDFS as the principal specified by the
hive.hdfs.presto.principal property. Presto authenticates this principal by using
the keytab specified by the hive.hdfs.presto.keytab property:

hive.hdfs.authentication.type=KERBEROS
hive.hdfs.presto.principal=hdfs@EXAMPLE.COM
hive.hdfs.presto.keytab=/etc/presto/hdfs.keytab

Cluster Separation
Another large-scale security option is the complete separation of the data sources and
configured catalogs by using them on separate Presto clusters. This separation can
make sense in various scenarios:

• Isolating read-only operations from ETL and other write operation use cases
• Hosting clusters on completely different infrastructure because of regulatory

requirements for the data; for example, web traffic data as compared to heavily
regulated data such as medical or financial or personal data

This separation of clusters can allow you to optimize the cluster configuration for the
different use cases and data, or locate the clusters closer to the data. Both situations
can achieve considerable performance as well as cost advantages, while at the same
time satisfying security needs.

Conclusion
Now you can feel safe about your data and the access Presto provides to it. You know
about the many options you have to secure Presto access and the exposed data. This
is a critical part of running Presto and has to be augmented by other activities such as
monitoring, discussed in Chapter 12.

But first you need to learn about numerous tools to use with Presto to achieve some
amazingly powerful results. Check it out in our next chapter, Chapter 11.

Cluster Separation | 227

CHAPTER 11

Integrating Presto with Other Tools

As you learned in Chapter 1, Presto unlocks a wide array of choices on how to use
Presto. By now you’ve learned a lot about running a Presto cluster, connecting with
JDBC, and writing queries running against one or multiple catalogs.

It is time to look at some applications that are successfully used with Presto in numer‐
ous organizations. The following sections cover various scenarios representing a
small subset of the possibilities.

Queries, Visualizations, and More with Apache Superset
Apache Superset can be described as a modern, enterprise-ready business intelligence
web application. But this short and concise description really does not do justice to
Superset.

Superset runs as a web application in your infrastructure and therefore does not
require your business analysts and other users to install or manage their tools on
their workstations. It supports Presto as a data source and so can be used as a front‐
end for your users accessing Presto, and all the configured data sources.

Once connected to Superset, users can start writing their queries in the included rich
SQL query editor called SQL Lab. SQL Lab allows you to write queries in multiple
tabs, browse the metadata of the database for assistance, run the queries, and receive
the results in the user interface in a table. Even long-running queries are supported.
SQL Lab also has numerous UI features that help you write the queries, or reduce that
effort to a button click or two. For users, SQL Lab alone is already valuable and pow‐
erful. However, it is only the first step of benefiting from Superset. SQL Lab allows
you a smooth transition to the real power of Superset: visualizing your data.

229

https://superset.apache.org

The visualizations supported by Superset are rich. You can get a first glance by look‐
ing at the visualizations gallery. You can create all the typical visualizations including
data point plots, line charts, bar charts, or pie charts. Superset, however, is much
more powerful and supports 3D visualizations, map-based data analysis, and more.

Once you have created the necessary queries and visualizations, you can assemble
them into a dashboard and share them with the rest of your organization. This allows
business analysts and other specialists to create useful aggregations of data and visual‐
izations and expose them to other users conveniently.

Using Presto with Superset is simple. Once both systems are up and running, you just
need to configure Presto as a database in Superset.

After Presto and Superset are connected, it can be useful to slowly expose it to your
users. The simplicity of Superset allows users to create powerful, but also computa‐
tionally heavy, queries with large data sets that can have a significant impact on the
sizing and configuration of your Presto cluster. Scaling usage step-by-step in terms of
users and use cases allows you to keep track of the cluster utilization and ensure that
you scale the cluster based on the new demands.

Performance Improvements with RubiX
When you scale Presto to access large distributed storage systems and expose it to
many users and tools, demands on your infrastructure increase tremendously. Com‐
pute performance needs can be handled by scaling the Presto cluster itself. The quer‐
ied data source can be tuned as well. Even having those optimizations all in place and
tuned, however, leaves you with a gap—the connection between Presto and the data.

The lightweight data-caching framework RubiX from Qubole can be located between
the Presto compute resources and the data sources and act as a caching layer. It sup‐
ports disk and in-memory caching. The performance gains from using this open
source platform when querying distributed storage systems can result in significant
performance improvements and cost reductions because of avoided data transfers
and repeated queries on the underlying source.

RubiX introduces support for a new protocol rubix:// for the URL scheme of a table
location in the Hive metastore. It therefore acts as a transparent enhancement to the
Hive connector, and from the view of a Presto user, nothing really changes. Metadata
about the storage as well as actual data is cached in RubiX. The RubiX storage is dis‐
tributed and can be collocated with the Presto cluster for maximum performance
improvements.

Using RubiX and Presto together is an established practice, since the benefits are very
complementary when querying distributed object storage.

230 | Chapter 11: Integrating Presto with Other Tools

https://superset.apache.org/gallery.html
https://github.com/qubole/rubix
http://www.qubole.com

Workflows with Apache Airflow
Apache Airflow is a widely used system to programmatically author, schedule, and
monitor workflows. It has a strong focus on data pipeline processing and is widely
used in the data science community. It is implemented in Python and capable of
orchestrating the executions of complex workflows written in Python, calling out to
many supported systems and including the execution of shell scripts.

To integrate Presto with Airflow, you can take advantage of Presto hooks in Airflow,
or run the Presto CLI from the command line. Airflow supports many data sources
beyond Presto and can therefore be used outside Presto to prepare data for later con‐
sumption via Presto as well as by accessing and working with the data via Presto to
take advantage of its performance, scalability, and integration with many data
sources.

The goal with Airflow and Presto is often to get the source data processed to end up
with a high-quality data set that supports use in applications and machine learning
models alike. Once the workflows, orchestrated by Airflow and run by Presto, and
potentially other integrations, have produced the desired data sets, Presto can be used
to access it and expose it to users with reports and dashboard, potentially using
Apache Superset; see “Queries, Visualizations, and More with Apache Superset” on
page 229.

Embedded Presto Example: Amazon Athena
Amazon Athena is a query service that can be used to run SQL queries directly on
data in files of any size stored in Amazon S3. Athena is a great example of an applica‐
tion that wraps Presto and uses it as a query engine to provide significant power and
features. Athena is offered as a service and essentially uses Presto and the Hive con‐
nector to query S3. The Hive metastore used with the storage is another service, AWS
Glue.

Figure 11-1 shows a high-level overview of the Amazon Athena architecture. Clients
access Athena via the Athena/Presto REST API. Queries are run on the deployment
of Presto with Athena by interacting with the Glue Data Catalog for the metadata of
the data stored in S3 and queried by Presto.

Workflows with Apache Airflow | 231

https://airflow.apache.org
https://aws.amazon.com/athena
https://aws.amazon.com/glue
https://aws.amazon.com/glue

Figure 11-1. High-level overview of the Amazon Athena architecture

Athena is a serverless architecture, which means you do not have to manage any infra‐
structure such as Amazon Elastic Compute Cloud (EC2) instances or manage, install,
or upgrade any database software to process the SQL statements. Athena takes care of
all that for you. With no setup time, Athena instantly provides you the endpoint to
submit your SQL queries. Serverless is a key design of Athena, providing high availa‐
bility and fault tolerance as built-in benefits. Amazon provides the guarantees of
uptime and availability of its services as well as resilience to failures or data loss.

Because Athena is serverless, it uses a different pricing model compared to when
you’re managing the infrastructure yourself. For example, when you run Presto on
EC2, you pay an EC2 instance cost per hour regardless of how much you use Presto.
With Athena, you pay only for the queries by paying for the amount of data read
from S3 per query.

Amazon provides several clients to interact with and submit queries to, Athena and
therefore Presto. You can use the AWS command-line interface, the REST API, the
AWS Web Console, and applications using the JDBC driver, ODBC driver, or the
Athena SDK.

Now, after all these benefits, it is important to understand that from a user’s perspec‐
tive Athena is not a managed Presto deployment at all. Here are a few important
aspects that distinguish it from a Presto deployment:

• No use of other data sources within AWS or outside possible
• No access to the Presto Web UI for query details and other aspects
• No control of Presto itself, including version, configuration, or infrastructure

Let’s look at a short example of using Athena with the iris data set: see “Iris Data Set”
on page 15. After creating a database and table and importing the data into Athena,
you are ready to use it.

You can run a query with Athena by using the AWS CLI with the start-query-
execution Athena command. You need to use two arguments:

232 | Chapter 11: Integrating Presto with Other Tools

--query-string

This is the query you want to execute in Athena.

--cli-input-json

This is a JSON structure that provides additional context to Athena. In this case
we specify the database in the Glue Data Catalog where the iris table exists
and we specify where to write the query results.

All queries run in Athena write the results to a location in S3. This
is configurable in the AWS Web Console and can be specified when
using the client tools for Athena.

We are using this JSON structure, stored in athena-input.json, for running this query:

{
 "QueryExecutionContext": {
 "Database": "iris"
 },
 "ResultConfiguration": {
 "OutputLocation": "s3://presto-book-examples/results/"
 }
}

Let’s run the Athena query with the AWS CLI:

$ aws athena start-query-execution \
--cli-input-json file://athena-input.json \
--query-string ‘SELECT species, AVG(petal_length_cm), MAX(petal_length_cm), \
 MIN(petal_length_cm) FROM iris GROUP BY species’

{
 "QueryExecutionId": "7e2a9640-04aa-4ae4-8e88-bd6fe4d9c289"
}

Because Athena executes the query asynchronously, the call to start-query-
execution returns a query execution ID. It can be used to get the status of the query
execution, or the results, when it is complete. The results are stored in S3 in CSV
format:

$ aws athena get-query-execution \
 --query-execution-id 7e2a9640-04aa-4ae4-8e88-bd6fe4d9c289

{
 "QueryExecution": {
 ...
 "ResultConfiguration": {
 "OutputLocation":
 "s3://...7e2a9640-04aa-4ae4-8e88-bd6fe4d9c289.csv"
 },

Embedded Presto Example: Amazon Athena | 233

 ...
}

$ aws s3 cp --quiet
s3://.../7e2a9640-04aa-4ae4-8e88-bd6fe4d9c289.csv
/dev/stdout

"species","_col1","_col2","_col3"
"virginica","5.552","6.9","4.5"
"versicolor","4.26","5.1","3.0"
"setosa","1.464","1.9","1.0"

You can also use the aws athena get-query-results command to retrieve the
results in a JSON structure format. Another choice is the open source AthenaCLI.

Stop and think about this. Without any infrastructure to manage, you can simply
point a command-line interface and run SQL queries on data files stored in S3.
Without Athena and Glue, you have to deploy and manage the infrastructure and
software to execute SQL queries on the data.

And without Presto, you have to somehow ingest and format the data into a database
for SQL processing.

The combination of Athena and Glue make for an incredible, powerful tool to use.
And the feature allowing you to use standard SQL against the S3 data is all powered
by Presto.

This quick introduction does not provide a comprehensive look at Athena, but it
gives you a glimpse at how Presto is being used in the industry and how much other
offerings can differ from Presto.

Using Athena satisfies various needs and comes with specific restrictions and charac‐
teristics. For example, Athena imposes limits for larger, longer-running queries.

Since you are paying for the processed data volume rather than the infrastructure to
run the software, costing is also very different. Each time you run a query, you pay for
the data processed. Depending on your usage patterns, this can be cheaper or more
expensive. Specifically, you can preprocess the data in S3 to use formats such as Par‐
quet and ORC as well as compression to reduce query cost. Of course, the prepro‐
cessing comes at a price as well, so you have to try to optimize for overall cost.

Many other platforms use Presto in a similar, hidden fashion that can provide tre‐
mendous power to the user and the provider of these platforms. If you are looking for
control and flexibility, running your own Presto deployment remains a powerful
option.

234 | Chapter 11: Integrating Presto with Other Tools

https://github.com/dbcli/athenacli

Starburst Enterprise Presto
Starburst is the enterprise company behind the Presto open source project and a
major sponsor of the project and the Presto Software Foundation. The founding team
members at Starburst were early contributors to Presto at Teradata, and they started
Starburst to focus on continuing the success of Presto in the enterprise. The founders
of the Presto open source project from Facebook joined Starburst in 2019, and Star‐
burst has become one of the largest contributors and committers to the Presto
project.

Starburst offers commercial support for an enhanced distribution of Presto, with
additional enterprise features such as more connectors, performance and other
improvements to existing connectors, a management console for clusters and cata‐
logs, and enhanced security features.

Starburst Enterprise Presto includes support for deployments anywhere. Bare-metal
servers, virtual machines, and containers on Kubernetes are all supported. You can
run Presto on all major cloud providers and cloud platforms, on-premises systems,
and hybrid cloud infrastructure.

Other Integration Examples
You’ve only scratched the surface of tools and platforms that can be used with Presto
or that integrate Presto. Just the list of business intelligence and reporting tools
known to be used with Presto is extensive. It at least includes the following:

• Apache Superset
• DBeaver
• HeidiSQL
• Hue
• Information Builders
• Jupyter Notebook
• Looker
• MicroStrategy
• Microsoft Power BI
• Mode
• Redash
• SAP Business Objects
• SQuirreL SQL Client

Starburst Enterprise Presto | 235

http://starburstdata.com

• Tableau
• Toad

Data platforms, hosting platforms, and other systems using or supporting Presto
include the following:

• AWS and Amazon Elastic Kubernetes Service
• Amazon EMR
• Google Kubernetes Engine
• Microsoft Azure Kubernetes Service
• Microsoft Azure HDInsight
• Qlik
• Qubole
• Red Hat OpenShift

Many of these users and vendors, such as Qubole, contribute to the project.

Custom Integrations
Presto is an open platform for integrating your own tools. The open source commu‐
nity around Presto is actively creating and improving integrations.

Simple integrations use the Presto CLI or the Presto JDBC driver. More advanced
integrations use the HTTP-based protocol exposed by the Presto coordinator for exe‐
cuting queries and more. The JDBC driver simply wraps this protocol; other wrap‐
pers for platforms including R and Python are available and linked on the Presto
website.

Many organizations take it to the next level by implementing new plug-ins for Presto.
These plug-ins can add features such as connectors to other data sources, event lis‐
teners, access controls, custom types, and user-defined functions to use in query
statements. The Presto documentation contains a useful developer guide that can be
your first resource. And don’t forget to reach out to the community for help and feed‐
back; see “Community Chat” on page 13.

Conclusion
Isn’t it amazing how widely used Presto is, and how many different tools you can
integrate with Presto to create some very powerful solutions? We only scratched the
surface in our tour here.

236 | Chapter 11: Integrating Presto with Other Tools

Lots of other tools are available and are used regularly, thanks to the availability of the
JDBC driver, ODBC drivers, the Presto CLI, and integrations built on top of these
and other extensions.

Whatever commercial or open source business intelligence reporting tool, or data
analytics platform, you prefer to use, be sure to investigate the availability of Presto
support or integration. Similarly, it is often worth understanding if Presto is used
under the hood in your toolchain. This might give you a better view of potential
improvements or expansions to your usage, or even a migration to first-class, direct
usage of Presto.

Depending on the level of ownership of the Presto deployment, you have access to
customizations, updates, and expansions as desired, or you can lean back and let your
provider manage Presto for you as part of the integration. Find your own ideal fit and
enjoy the benefits of Presto. And if you manage your own Presto deployment, make
sure to learn more about it in Chapter 12.

Conclusion | 237

CHAPTER 12

Presto in Production

After learning about and installing Presto, first as a simple exploratory setup in Chap‐
ter 2 and then as a deployment in Chapter 5, you now get to dive into further details.
After all, simply installing and configuring a cluster is a very different task from keep‐
ing it up and running day and night, with different users and changing data sources
and entirely separate usage.

In this chapter you are therefore getting to explore other aspects you need to learn
about in order to be a successful operator of your Presto clusters.

Monitoring with the Presto Web UI
As discussed in “Presto Web UI” on page 35, the Presto Web UI is accessible on every
Presto cluster coordinator and can be used to inspect and monitor the Presto cluster
and processed queries. The detailed information provided can be used to better
understand and tune the Presto system overall as well as individual queries.

The Presto Web UI exposes information from the Presto system
tables, discussed in “Presto System Tables” on page 134.

When you first navigate to the Presto Web UI address, you see the main dashboard
shown in Figure 12-1. It displays Presto cluster information in the top section and a
list of queries in the bottom section.

239

Figure 12-1. Presto Web UI main dashboard

Cluster-Level Details
Let’s first discuss the Presto cluster information:

Running Queries
The total number of queries currently running in the Presto cluster. This
accounts for all users. For example, if Alice is running two queries and Bob is
running five queries, the total number in this box shows seven queries.

Queued Queries
The total number of queued queries for the Presto cluster for all users. Queued
queries are waiting for the coordinator to schedule them, based on the resource
group configuration.

Blocked Queries
The number of blocked queries in the cluster. A blocked query is unable to be
processed due to missing available splits or other resources. You learn more
about query states in the next sections.

Active Workers
The number of active worker nodes in the cluster. Any worker nodes added or
removed, manually or by auto scaling, are registered in the discovery service, and
the displayed number is updated accordingly.

240 | Chapter 12: Presto in Production

Runnable Drivers
The average number of runnable drivers in the cluster, as described in Chapter 4.

Reserved Memory
The total amount of reserved memory in bytes in Presto.

Rows/Sec
The total number of rows processed per second across all queries running in the
cluster.

Bytes/Sec
The total number of bytes processed per second across all queries running in the
cluster.

Worker Parallelism
The total amount of worker parallelism, which is the total amount of thread CPU
time across all workers, across all queries running in the cluster.

Query List
The bottom section of the Presto Web UI dashboard lists the recently run queries. An
example screenshot is displayed in Figure 12-2. The number of available queries in
this history list depends on the Presto cluster configuration.

Figure 12-2. List of queries in the Presto Web UI

Above the list itself, controls are available to select the criteria that determine which
queries are listed. This allows you to locate specific queries even when a cluster is
very busy and runs dozens or hundreds of queries.

Monitoring with the Presto Web UI | 241

The input field allows you to type criteria text to use in order to search for a specific
query. The criteria include the username of the query initiator, the query source, the
query ID, a resource group, or even the SQL text of the query and the query state.

The State filter beside the text input field allows you to include or exclude queries
based on the state of the query—running, queued, finished, and failed queries. Failed
queries can be further detailed to include or exclude for specific failure reasons—
internal, external, resource, and user errors.

Controls on the left allow you to determine the sort order of the displayed queries,
the timing of the reordering when the data changed, and the maximum number of
queries to show.

Each row underneath the query criteria represents a single query. The left column in
the row displays information about the query. The right column displays the SQL text
and the state of the query. An example of the query summary is available in
Figure 12-3.

Figure 12-3. Information for a specific query in the Presto Web UI

Let’s take a closer look at the query details. Each query has the same information for
each query run. The text at the top left is the query ID. In this example, the value is
20190803_224130_00010_iukvw. Looking closer, you may notice that the date and
time (UTC) make up the beginning of the ID using the format YYYYMMDD_HHMMSS. The
latter half is an incremental counter for the query. Counter value 00010 simply means
it was the 10th query run since the coordinator started. The final piece, iukvw, is a
random identifier for the coordinator. Both this random identifier and the counter
value are reset if the coordinator is restarted. The time on the top right is the local
time when the query was run.

The next three values in the example—ec2-user, presto-cli, and global—represent
the end user running the query, the source of the query, and the resource group used
to run the query. In this example, the user is the default ec2-user, and we were using
the presto-cli to submit the query. If you specify the --user flag when running the
Presto CLI, the value changes to what you specified. The source may also be some‐
thing other than presto-cli; for example, it may display presto-jdbc when an

242 | Chapter 12: Presto in Production

application connects to Presto with the JDBC driver. The client can also set it to any
desired value with the --source flag for the Presto CLI, or JDBC connection string
property.

The grid of values below is not well labeled in the Presto Web UI, but it contains
some important information about the query, as explained in Table 12-1.

Table 12-1. Grid of values for a specific query

Completed Splits: The number
of completed splits for the
query. The example shows 25
completed splits. At the
beginning of query execution,
this value is 0. It increases
during query execution as splits
complete.

Running Splits: The number of running
splits for the query. When the query is
completed, this value is always 0.
However, during execution, this number
changes as splits run and complete.

Queued Splits: The number of queued splits
for the query. When the query is completed,
this value is always 0. However, during
execution, this number changes as splits
move between queued and run states.

Wall Time: The total wall time
spent executing the query. This
value continues to grow even if
you’re paging results.

Total Wall Time: This value is the same as
the wall time except that it includes
queued time as well. The wall time
excludes any time for which the query is
queued. This is the total time you’d
observe, from when you submit to query
to when you finish receiving results.

CPU Time: The total CPU time spent
processing the query. This value is often
larger than the wall time because parallel
execution between workers and threads on
workers all count separately and add up. For
example, if four CPUs spend 1 second to
process a query, the resulting total CPU time
is 4 seconds.

Current Total Reserved
Memory: The current total
reserved memory used for the
time of query execution. For
completed queries, this value is
0.

Peak Total Memory: The peak total
memory usage during the query execution.
Certain operations during the query
execution may require a lot of memory,
and it is useful to know what the peak
was.

Cumulative User Memory: The cumulative
user memory used throughout the query
processing. This does not mean all the
memory was used at the same time. It’s the
cumulative amount of memory.

Many of the icons and values in the Presto Web UI have pop-up
tooltips that are visible if you hover your mouse cursor over the
image. This is helpful if you are unsure of what a particular value
represents.

Next you need to learn more about the different states of query processing, displayed
above the query text itself. The most common states are RUNNING, FINISHED, USER
CANCELLED, or USER ERROR. The states RUNNING and FINISHED are self-explanatory and
exactly what they say. USER CANCELLED means that the query was killed by the user.
USER ERROR, on the other hand, signifies that the SQL query statement submitted by
the user contained a syntactic or semantic error.

The BLOCKED state occurs when a query that is running becomes blocked while wait‐
ing on something such as resources or additional splits to process. Seeing a query go
to and from this state is normal. However, if a query gets stuck in this state, there are

Monitoring with the Presto Web UI | 243

many potential reasons, and this may indicate a problem with the query or the Presto
cluster. If you find a query that appears to be stuck in this state, first check the mem‐
ory use and configuration of the system. It may be that this query requires an unusu‐
ally high amount of memory or is computationally expensive. Additionally, if the
client is not retrieving the results or cannot read the results fast enough, this back
pressure can put the query into a BLOCKED state.

The QUEUED state occurs when a query is started, or stopped from processing, and put
into a waiting stage as part of the rules defined for resource groups. The query is sim‐
ply waiting to be executed.

You may also see a query in the PLANNING state. This typically occurs for larger, com‐
plex queries that require a lot of planning and optimizations for running the query. If
you see this often, and planning seems to take a noticeable amount of time for quer‐
ies, you should investigate possible reasons, such as insufficient memory availability
or processing power of the coordinator.

Query Details View
So far you have seen information about the Presto cluster overall and higher-level
information about the queries. The Web UI offers even more details about each
query. Simply click the name of the specific query, as shown in Figure 12-3, to access
the Query Details view.

The Query Details view contains a lot of information about a specific query. Let’s
explore enough for you to feel comfortable using it.

The Query Details view is often used by Presto developers and
users with in-depth knowledge of Presto. This level of sophistica‐
tion requires you to be very familiar with the Presto code and
internals. Checking out this view may still be useful for normal
users. Over time, you learn more and acquire more expertise.

The Query Details view uses several tabs for viewing more detailed information
about the Presto query. Apart from the tabs, the query ID and the state are always
visible. You can see an example header of the view with the tabs in Figure 12-4.

Figure 12-4. Query Details header and tabs

244 | Chapter 12: Presto in Production

Overview
The Overview page includes the information visible in the Query Details section of
the query list and much more detail in numerous sections:

• Session
• Execution
• Resource Utilizations Summary
• Timeline
• Query
• Prepare Query
• Stages
• Tasks

The Stages section, shown in Figure 12-5, displays information on the query stages.

Figure 12-5. Stages section in the Overview tab of the Query Details page

This particular query was the SELECT count(*) FROM lineitem query. Because it is a
simpler query, it consists of only two stages. Stage 0 is the single-task stage that runs
on the coordinator and is responsible for combining the results from the tasks in
stage 1 and performing the final aggregation. Stage 1 is a distributed stage that runs
tasks on each of the workers. This stage is responsible for reading the data and com‐
puting the partial aggregation.

The following list explains the numerical values from the Stages section, available for
each stage:

TIME—SCHEDULED
The amount of time the stage remained scheduled before all tasks for the stage
were completed.

TIME—BLOCKED
The amount of time the stage was blocked while waiting for data.

Monitoring with the Presto Web UI | 245

TIME—CPU
The total amount of CPU time of the tasks in the stage.

MEMORY–CUMULATIVE
The cumulative memory used throughout the stage. This does not mean all the
memory was used at the same time. It is the cumulative amount of memory used
over the time of processing.

MEMORY—CURRENT
The current total reserved memory used for the stage. For completed queries,
this value is 0.

MEMORY—BUFFERS
The current amout of memory consumed by data, waiting for processing.

MEMORY—PEAK
The peak total memory during the stage. Certain operations during the query
execution may require a lot of memory, and it is useful to know what the peak
was.

TASKS—PENDING
The number of pending tasks for the stage. When the query is completed, this
value is always 0.

TASKS—RUNNING
The number of running tasks for the stage. When the query is completed, this
value is always 0. During execution, the value changes as tasks run and complete.

TASKS—BLOCKED
The number of blocked tasks for the stage. When the query is completed, this
value is always 0. However, during execution this number will change as tasks
move between blocked and running states.

TASKS—TOTAL
The number of completed tasks for the query.

SCHEDULED TIME SKEW, CPU TIME SKEW, TASK SCHEDULED TIME, and
TASK CPU TIME

These histogram charts show the distribution and changes of scheduled time,
CPU time, task scheduled time, and task CPU time for multiple tasks across
workers. This allows you to diagnose utilization of the workers during the execu‐
tion of a longer-running, distributed query.

The section below the Stages section describes more details of the tasks, displayed in
Figure 12-6.

246 | Chapter 12: Presto in Production

Figure 12-6. Tasks information in the Query Details page

Let’s examine the values in the tasks list; take a look at Table 12-2.

Table 12-2. Description of the columns in the tasks list in Figure 12-6

Column Description

ID The task identifier in the format stage-id.task-id. For example, ID 0.0 indicates Task 0 of Stage 0,
and 1.2 indicates Task 2 of Stage 1.

Host The IP address of the worker node where the task is run.

State The state of the task, which can be PENDING, RUNNING, or BLOCKED.

Pending Splits The number of pending splits for the task. This value changes as the task is running and shows 0 when the
task is finished.

Running Splits The number of running splits for the task. This value changes as the task is running and shows 0 when the
task is finished.

Blocked Splits The number of blocked splits for the task. The value changes as the task is running and shows 0 when the
task is finished.

Completed
Splits

The number of completed splits for the task. The value changes as the task is running and equals the total
number of splits run when the task is finished.

Rows The number of rows processed in the task. This value increases as the task runs.

Rows/s The number of rows processed per second in the task.

Bytes The number of bytes processed in the task. This value increases as the task runs.

Bytes/s The number of bytes processed per second in the task.

Elapsed The total amount of elapsed wall time for the task scheduled.

CPU Time The total amount of CPU time for the task scheduled.

Buffered Current amount of buffered data, waiting for processing.

If you examine some of these values carefully, you’ll notice how they roll up. For
example, the total CPU time for all tasks in a stage equals the CPU time listed in the
stage for which they belong. The total CPU time for the stages equals the amount of
CPU time listed on the query CPU time.

Monitoring with the Presto Web UI | 247

Live Plan
The Live Plan tab allows you to view query processing performed by the Presto clus‐
ter, in real time, while it is executing. You can see an example in Figure 12-7.

Figure 12-7. Live plan example for the count(*) query on lineitem

248 | Chapter 12: Presto in Production

During query execution, the counters in the plan are updated while the query execu‐
tion progresses. The values in the plan are the same as described for the Overview
tab, but they are overlaid in real time on the query execution plan. Looking at this
view is useful to visualize where a query is stuck or spending a lot of time, in order to
diagnose or improve a performance issue.

Stage Performance
The Stage Performance view provides a detailed visualization of the stage perfor‐
mance after query processing is finished. An example is displayed in Figure 12-8.

The view can be thought of as a drill-down from the Live Plan view, where you can
see the operator pipeline of the task within the stage. The values in the plan are the
same as described for the Overview tab. Looking at this view is useful to see where a
query is stuck or spending a lot of time, in order to diagnose or fix a performance
issue. You can click on each individual operator to access detailed information.

Monitoring with the Presto Web UI | 249

Figure 12-8. Presto Web UI view for stage performance of the count(*) lineitem query

250 | Chapter 12: Presto in Production

Splits
The Splits view shows a timeline for the creation and processing of splits during the
query execution.

JSON
The JSON tab provides all query detail information in JSON format. The information
is updated based on the snapshot for which it is retrieved.

Parts of the Web UI are helpful for copying lengthy strings to the
system clipboard. Keep a look out for the clipboard icon. By click‐
ing it, the associated string is copied to the system clipboard for
you to paste somewhere else.

Tuning Presto SQL Queries
In “Query Planning” on page 53, you learned about the cost-based optimizer in
Presto. Recall that SQL is a declarative language in which the user writes a SQL query
to specify the data they want. This is unlike an imperative program. With SQL, the
user does not specify how to process the data to get the result. It is left to the query
planner and optimizer to determine the sequence of steps to process the data for the
desired result. The sequence of steps is referred to as the query plan.

In most cases, the end user submitting the SQL queries can rely on Presto to plan,
optimize, and execute a SQL query efficiently to get the results fast. As an end user,
you should not have to worry about the details.

However, sometimes you are not getting the performance you expect, so you need to
be able to tune Presto queries. You need to identify whether a specific execution is an
outlier single query that is not performing well, or whether multiple queries of similar
properties are not performing well.

Let’s start with tuning an individual query, assuming the rest of the queries you run
are fine on the system. When examining a poorly performing query, you should first
look to see if the tables that the query references have data statistics. At the time of
this writing, the only tables that provide data statistics to Presto are those used with
the Hive connector. It is expected that additional connectors will start to provide data
statistics.

presto:ontime> SHOW STATS FOR flights;

Tuning Presto SQL Queries | 251

Joins in SQL are one of the most expensive operations. You need to focus on joins
when tuning the performance of your query, and determine the join order by run‐
ning an EXPLAIN on the query:

presto:ontime> EXPLAIN
 SELECT f.uniquecarrier, c.description, count(*) AS ct
 FROM postgresql.airline.carrier c,
 hive.ontime.flights_orc f
 WHERE c.code = f.uniquecarrier
 GROUP BY f.uniquecarrier, c.description
 ORDER BY count(*) DESC
 LIMIT 10;

As a general rule, you want the smaller input to a join to be on the build side. This is
the input to the hash join for which a hash table is built. Because the build side
requires reading in the entire input and building a hash table in memory, you want
this to be the smaller of the inputs. Being able to determine whether Presto got the
join order correct requires some domain knowledge of the data to further investigate.
For example, if you know nothing about the data, you may have to run some experi‐
mental queries to obtain additional information.

If you have determined that the join order is nonoptimal, you can override the join
reordering strategy by setting a toggle to use the syntactic order of the tables listed in
the SQL query. This can be configured in the config.properties file as the property
optimizer.join-reordering-strategy. However, if you want to override a single
query, you often want to just see the session property join_reordering_strategy
(see “Session Information and Configuration” on page 146). The allowed values for
this property are AUTOMATIC, ELIMINATE_CROSS_JOINS and NONE. Setting the value to
ELIMINATE_CROSS_JOINS or NONE performs an override of the cost-based optimizer.
ELIMINATE_CROSS_JOINS is a good compromise since it reorders joins only to elimi‐
nate cross joins, which is good practice, and otherwise stays with the lexical order
suggested by the query author:

...
FROM postgresql.airline.carrier c,
hive.ontime.flights_orc f
...

...
FROM hive.ontime.flights_orc f,
postgresql.airline.carrier c
...

252 | Chapter 12: Presto in Production

Tuning the CBO
By default, the Presto cost-based optimizer (CBO) reorders up to 9 tables at a time.
For more than 9 tables, the CBO segments the search space. For example, if there are
20 tables in the query, Presto reorders the first 9 as one optimization problem, the
second 9 as a second optimization problem, and then finally the remaining 2 tables.
The limit is set because the possible number of join orders scales factorially. So some
reasonable limits needs to be set. To increase the value, you can set the
optimizer.max-reordered-joins parameter in the config.properties file. Setting this
value higher can lead to performance issues where Presto is spending a lot of time
and resources optimizing the query. Recall that the CBO’s goal is not to get the best
plan possible, but to get a plan that is good enough.

Besides join optimizations, Presto includes some heuristic-based optimizations.
These optimizers are not costed and do not always result in best results. Optimiza‐
tions can take advantage of the fact that Presto is a distributed query engine; aggrega‐
tions are performed in parallel. This means that an aggregation can be split into
multiple smaller parts that can then be distributed to multiple workers, run in paral‐
lel, and be aggregated in a final step from the partial results.

A common optimization in Presto and other SQL engines is to push partial aggrega‐
tions before the join to reduce the amount of data going into the join. Using it can be
configured with the push_aggregation_through_join property. Because the aggre‐
gation produces partial results, a final aggregation is still performed after the join.
The benefit of using this optimization depends on the actual data, and the optimiza‐
tion can even result in a slower query. For example, if the join is highly selective, then
it may be more performant to run the aggregation after the join completes. To experi‐
ment, you can simply turn this optimization off by setting the property to false for
the current session.

Another common heuristic is to compute a partial aggregation before the final
aggregation:

presto:ontime> EXPLAIN SELECT count(*) FROM flights_orc;
 Query Plan

 - Output[_col0]
 Layout: [count:bigint]
 _col0 := count
 - Aggregate(FINAL)
 Layout: [count:bigint]
 count := "count"("count_3")
 - LocalExchange[SINGLE] ()
 Layout: [count_3:bigint]
 - RemoteExchange[GATHER]
 Layout: [count_3:bigint]

Tuning Presto SQL Queries | 253

 - Aggregate(PARTIAL)
 Layout: [count_3:bigint]
 count_3 := "count"(*)
 - TableScan[hive:ontime:flights_orc]
 Layout: []
(1 row)

When this is a generally a good heuristic, the amount of memory to keep for the hash
table can be tuned. For example, if the table has a lot of rows with few distinct values
in the grouping keys, this optimization works well and reduces the amount of data
early before being distributed over the network. However, if there are a higher num‐
ber of distinct values, the size of the hash tables needs to be larger in order to reduce
the amount of data. By default, the memory used for the hash table is 16 MB, but this
can be adjusted by setting task.max-partial-aggregation-memory in the con‐
fig.properties file. However, with too high a count of distinct group keys, the aggrega‐
tion does nothing to reduce the network transfer, and it may even slow down the
query.

Memory Management
Getting the memory configuration and management for your Presto cluster right is
not an easy task. Many constantly changing factors influence the memory needs:

• Number of workers
• Memory of coordinator and worker
• Number and type of data sources
• Characteristics of running queries
• Number of users

For Presto, a multiuser system using a cluster of workers, resource management is a
fairly challenging problem to solve. Ultimately, you have to pick a starting point and
then monitor the system and adjust to the current and upcoming needs. Let’s look at
some details and talk about recommendations and guidelines around memory man‐
agement and monitoring in Presto.

All memory management discussed applies to the JVM running
the Presto server. The values are allocations within the JVMs on the
workers, and the JVM configuration needs to consider the size of
these values to allow allocation.
Depending on the number of concurrent queries, the JVM needs to
be adjusted to a much larger value. The next example provides
some insight.

254 | Chapter 12: Presto in Production

All of the preceding factors combine into what we call the workload. Tuning the clu‐
ster’s memory relies heavily on the workload being run.

For example, most query shapes contain multiple joins, aggregations, and window
functions. If the query size of the workload is small, you can set lower memory limits
per query and increase the concurrency—and the other way around for larger query
sizes. For context, query size is a product of query shape and amount of input data.
Presto provides a way to manage memory utilization across the cluster by setting cer‐
tain properties at the time of deployment in config.properties:

• query.max-memory-per-node

• query.max-total-memory-per-node

• query.max-memory

• query.max-total-memory

Memory management in Presto is separated into two kinds of memory allocations:

User memory
User queries such as aggregations and sorting control the user memory
allocation.

System memory
System memory allocation is based on the execution implementation by the
query engine itself and includes read, write, and shuffle on buffers, table scans,
and other operations.

With this separation in mind, you can examine the memory properties some more:

query.max-memory-per-node

The maximum user memory a query can utilize on a specific worker for process‐
ing aggregations, input data allocation, etc.

query.max-total-memory-per-node

The maximum allowed total of user and system memory, required to be larger
than query.max-memory-per-node. When the memory consumed by a query in
user and system allocations exceeds this limit, it is killed.

query.max-memory

The maximum user memory a query can utilize across all workers in the cluster.

query.max-total-memory

The maximum utilization of memory by a query for user and system allocations
for the entire cluster, as a result necessarily greater than query.max-memory.

Memory Management | 255

If a query ends up exceeding these limits and as a result is killed, error codes expose
the reason:

• EXCEEDED_LOCAL_MEMORY_LIMIT means that query.max-memory-per-node or
query.max-total-memory-per-node was exceeded.

• EXCEEDED_GLOBAL_MEMORY_LIMIT means that query.max-memory or query.max-
total-memory was exceeded.

Let’s look at a real-world example for a small cluster of one coordinator and ten work‐
ers and their characteristics:

• One coordinator
• Ten workers; typically workers are all identical system specifications
• Physical memory per worker: 50 GB
• Max JVM heap size configured in -Xmx in jvm.config to 38 GB
• query.max-memory-per-node: 13 GB
• query.max-total-memory-per-node: 16 GB
• memory.heap-headroom-per-node: 9 GB
• query.max-memory: 50 GB
• query.max-total-memory: 60 GB

Let’s break these numbers down a bit more.

The total available memory on each worker is ~50 GB and we leave ~12 GB for the
operating system, agents/daemons, and components running outside the JVM on the
system. These systems include monitoring and other systems that allow you to man‐
age the machine and keep it functioning well. As a result, we determine to set the
JVM max heap size to 38 GB.

When query size and shape is small, concurrency can be set higher. In the preceding
example, we are assuming query size and shape to be medium to large and are also
accounting for data skew. query.max-memory is set to 50 GB, which is at the overall
cluster level. While looking at max-memory, we also consider initial-hash-partitions;
this should ideally be a number less than or equal to the number of workers.

If we set that to 8 with max-memory 50 GB, we get 50/8, so about 6.25 GB per worker.
Looking at the local limit max-memory-per-node set to 13 GB, we keep some head‐
room for data skew by allowing two times the memory consumption per node. These
numbers vary significantly based on how the data is organized and what type of quer‐
ies are typically run—basically, the workload for the cluster. In addition, the

256 | Chapter 12: Presto in Production

infrastructure used for the cluster, such as the available machine sizes and numbers,
has a big impact on the selection of the ideal configuration.

A configuration can be set to help avoid a deadlock situation: query.low-memory-
killer.policy. This can be set to total-reservation or total-reservation-on-
blocked-nodes. When set to total-reservation, Presto kills the largest running
query on the cluster to free up resources. On the other hand, total-reservation-
on-blocked-nodes kills the query that is utilizing the most memory on the nodes that
are blocked.

As you can see from the example, you just end up making some assumptions to get
started. And then you adjust based on what happens with your actual workloads.

For example, running a cluster for interactive ad hoc queries from users with a visual‐
ization tool can create many small queries. An increase of users then ends up increas‐
ing the number of queries and the concurrency of them. This typically does not
require a change of the memory configuration, but just a scaling up of the number of
workers in the cluster.

On the other hand, if that same cluster gets a new data source added that exposes
massive amounts of data for complex queries that most likely blow the limits, you
have to adjust memory.

This gets us to another point that is worth mentioning. Following the best practice
recommendation, in a typical Presto cluster infrastructure setup, all workers are the
same. All use the same virtual machine (VM) image or container size with identical
hardware specifications. As a result, changing the memory on these workers typically
means that the new value is either too large for the physical available memory, or too
small to make good use of the overall system. Adjusting the memory therefore creates
the need to replace all worker nodes in the cluster. Depending on your cluster infra‐
structure using, for example, virtual machines in a private cloud or containers in a
Kubernetes cluster from a public cloud provider, this process can be more or less
laborious and fast to implement.

This leads us to one last point worth mentioning here. Your assessment of the work‐
loads can reveal that they are widely different: lots of queries are small, fast, ad hoc
queries with little memory footprint, and others are massive, long-running processes
with a bunch of analysis in there, maybe even using very different data sources. These
workload differences indicate very different memory configuration, and even very
different worker configuration and maybe even monitoring needs. In this scenario,
you really should take the next step and separate the workloads by using different
Presto clusters.

Memory Management | 257

Task Concurrency
To improve performance for your Presto cluster, certain task-related properties may
need to be adjusted from the default settings. In this section, we discuss two common
properties you may have to tune. However, you can find several others in the Presto
documentation. All these properties are set in the config.properties file:

Task worker threads
The default value is set to the number of CPUs of the machine multiplied by 2.
For example, a dual hex core machine uses 2 × 6 × 2, so 24 worker threads. If
you observe that all threads are being used and the CPU utilization in the
machine is still low, you can try to improve CPU utilization and thus perfor‐
mance by increasing this number via the task.max-worker-threads setting. The
recommendation is to slowly increment this number, as setting it too high can
have a diminishing return or adverse effects due to increased memory usage and
additional context switching.

Task operator concurrency
Operators such as joins and aggregations are processed in parallel by partitioning
the data locally and executing the operators in parallel. For example, the data is
locally partitioned on the GROUP BY columns, and then multiple aggregation
operators are performed in parallel. The default concurrency for these parallel
operations is 16. This value can be adjusted by setting the task.concurrency
property. If you are running many concurrent queries, the default value may
result in reduced performance due to the overhead of context switching. For
clusters that run only a smaller number of concurrent queries, a higher value can
help increase parallelism and therefore performance.

Worker Scheduling
To improve performance of your Presto cluster, certain scheduling related properties
may need to be adjusted from the default settings. You can tune three common con‐
figurations:

• Splits per task
• Splits per node
• Local scheduling

Several others are explained in the Presto documentation.

258 | Chapter 12: Presto in Production

Scheduling Splits per Task and per Node
Each worker node processes a maximum number of splits. By default, the maximum
number of splits processed per worker node is 100. This value can be adjusted with
the node-scheduler.max-splits-per-node property. You may want to adjust this if
you’re finding that the workers have maxed out this value and are still underutilized.
Increasing the value improves performance, particularly when a lot of splits exist. In
addition, you can consider increasing the node-scheduler.max-pending-splits-
per-task property. This value should not exceed node-scheduler.max-splits-per-
node. It ensures that work is queued up when the workers finish the tasks in process.

Local Scheduling
When scheduling splits on worker nodes, the Presto scheduler uses two methods.
The method to use depends on the deployment of Presto. For example, if workers run
on the same machines as distributed storage, it is optimal to schedule splits on the
worker nodes where the data is located. Scheduling splits where the data is not loca‐
ted requires the data to be transferred over the network to the worker node for pro‐
cessing. Therefore, you see an increase in performance when scheduling splits on the
same node where the data is stored.

The default method legacy does not account for the data location when scheduling
splits. The improved flat method does account for the data location when schedul‐
ing splits, and it can be used by setting node-scheduler.network-topology. The
Presto scheduler uses 50% of the queue for scheduling local splits.

The common use case for using the flat method occurs when Presto is installed and
collocated on HDFS data nodes or when using RubiX for caching (see “Performance
Improvements with RubiX” on page 230). RubiX caches data from the distributed
storage on the worker nodes. Therefore, scheduling local splits is advantageous.

Network Data Exchange
Another important factor affecting the performance of your Presto cluster is the net‐
work configuration and setup within the cluster and the closeness to the data sources.
Presto supports network-specific properties that can be adjusted from the defaults to
adopt to your specific scenario.

In addition to improving performance, sometimes other network-related issues
require tuning in order for queries to perform well. Let’s discuss some of the common
properties you may have to tune.

Network Data Exchange | 259

Concurrency
Presto exchange clients make requests to the upstream tasks producing data. The
default number of threads used by the exchange clients is 25. This value can be adjus‐
ted by setting the property exchange.client-threads.

Setting a larger number of threads can improve performance for larger clusters or
clusters configured for high concurrency. The reason is that when more data is pro‐
duced, additional concurrency to consume the data can decrease latency. Keep in
mind that these additional threads increase the amount of memory needed.

Buffer Sizes
Data sent and received during the exchange is kept in buffers on the target and source
sides of the exchange. The buffer sizes for each side can be adjusted independently.

On the source side, data is written by the tasks to a buffer waiting to be requested
from the downstream exchange client. The default buffer size is 32 MB. It can be
adjusted by setting the sink.max-buffer-size property. Increasing the value may
increase throughput for a larger cluster.

On the target side, data is written to a buffer before it is processed by the downstream
task. The default buffer size is 32 MB. It can be adjusted by setting the property
exchange.max-buffer-size. Setting a higher value can improve query performance
by allowing retrieval of more data over the network before back pressure is applied.
This is especially true for larger clusters.

Tuning Java Virtual Machine
In Chapter 2, you used the configuration file etc/jvm.config, which contains
command-line options for the JVM. The Presto launcher uses this file when starting
the JVM running Presto. Compared to the earlier mentioned configuration, a more
suitable configuration for production usage uses higher memory values:

-server
-XX:+UseG1GC
-XX:+ExplicitGCInvokesConcurrent
-XX:+ExitOnOutOfMemoryError
-XX:+UseGCOverheadLimit
-XX:+HeapDumpOnOutOfMemoryError
-XX:-UseBiasedLocking
-Djdk.attach.allowAttachSelf=true
-Xms16G
-Xmx16G
-XX:G1HeapRegionSize=32M
-XX:ReservedCodeCacheSize=512M
-Djdk.nio.maxCachedBufferSize=2000000

260 | Chapter 12: Presto in Production

Typically you need to increase the maximum memory allocation pool for the JVM
with the Xmx value, in this case, upped to 16 GB. The Xms parameter sets the initial,
minimal memory allocation. The general recommendation is to set both Xmx and Xms
to the same value.

In the preceding configuration example memory allocation is set to 16 GB. The actual
value you use depends on the machines used by your cluster. The general recommen‐
dation is to set both the Xmx and Xms to 80% of the total memory of the system. This
allows for plenty of headroom for other system processes running. Further details
about the memory management of Presto and related configuration can be found in
“Memory Management” on page 254.

For large Presto deployments, memory allocations of 200 GB and beyond are not
uncommon.

While small processes such as monitoring can run on the same machine as Presto, it’s
highly discouraged to share the system with other resource-intensive software. For
example, Apache Spark and Presto should not be run on the same set of hardware.

If you suspect Java garbage collection (GC) issues, you can set additional parameters
to help you with debugging:

-XX:+PrintGCApplicationConcurrentTime
-XX:+PrintGCApplicationStoppedTime
-XX:+PrintGCCause
-XX:+PrintGCDateStamps
-XX:+PrintGCTimeStamps
-XX:+PrintGCDetails
-XX:+PrintReferenceGC
-XX:+PrintClassHistogramAfterFullGC
-XX:+PrintClassHistogramBeforeFullGC
-XX:PrintFLSStatistics=2
-XX:+PrintAdaptiveSizePolicy
-XX:+PrintSafepointStatistics
-XX:PrintSafepointStatisticsCount=1

These options can be helpful when troubleshooting a full GC pause. In combination
with the advancements of JVM and the engineering of the Presto query engine, a GC
pause should be a very rare event. If it does happen, it should be investigated. First
steps to fix these issues are often an upgrade of the JVM version and the Presto ver‐
sion used, since both receive performance improvements regularly.

Tuning Java Virtual Machine | 261

JVM and garbage collection algorithms and configuration are com‐
plex topics. Documentation on GC tuning is available from Oracle
and other JVM vendors. We strongly recommend adjusting these
settings in small changes in test environments, before attempting to
roll them out to production systems. Also keep in mind that Presto
currently requires Java 11. Older or newer JVM versions, as well as
JVM versions from different vendors, can have different behavior.

Resource Groups
Resource groups are a powerful concept in Presto used to limit resource utilization on
the system. The resource group configuration consists of two main pieces: the
resource group properties and the selector rules.

A resource group is a named collection of properties that define available cluster
resources. You can think of a resource group as a separate section in the cluster that is
isolated from other resource groups. The group is defined by CPU and memory lim‐
its, concurrency limits, queuing priorities, and priority weights for selecting queued
queries to run.

The selector rules, on the other hand, allow Presto to assign an incoming query
request to a specific resource group.

The default resource group manager uses a file-based configuration and needs to be
configured in etc/resource-groups.properties:

resource-groups.configuration-manager=file
resource-groups.config-file=etc/resource-groups.json

As you can see, the actual configuration uses a JSON file. The content of the file
defines the resource groups as well as the selector rules. Note that the JSON file can
be any path that is accessible to Presto and that resource groups need to be config‐
ured only on the coordinator:

{
 "rootGroups": [],
 "selectors": [],
 "cpuQuotaPeriod": ""
}

cpuQuotaPeriod is optional.

Let’s look at the definition of two resource groups to get started:

 "rootGroups": [
 {
 "name": "ddl",
 "maxQueued": 100,
 "hardConcurrencyLimit": 10,
 "softMemoryLimit": "10%",

262 | Chapter 12: Presto in Production

 },
 {
 "name": "ad-hoc",
 "maxQueued": 50,
 "hardConcurrencyLimit": 1,
 "softMemoryLimit": "100%",
 }
]

The example defines two resource groups named ddl and ad-hoc. Each group has a
set maximum number of concurrent queries and total amount of distributed memory
limits. For the given group, if the limits are met for concurrency or memory limits,
then any new query is placed in the queue. Once the total memory usage goes down
or a query completes, the resource group chooses a query from the queue to schedule
to run. Each group also has a maximum number of queries to queue. If this limit is
reached, any new queries are rejected and the client receives an error indicating that.

In our example, the ad hoc group is designed for all queries that are not DDL queries.
This group allows only one query to run concurrently, with up to 50 queries to be
queued. The group has a memory limit of up to 100%, meaning it could use all the
available memory to run it.

DDL queries have their own group, with the idea that these types of queries are rela‐
tively short and lightweight and should not be starved by longer-running ad hoc SQL
queries. In this group, you specify that there should be no more than 10 DDL queries
running concurrently, and the total amount of distributed memory used by all quer‐
ies running should be no more than 10% of the Presto clusters memory. This allows a
DDL query to be executed without having to wait in the ad hoc query line.

Now that the two groups are defined, you need to define the selector rules. When a
new query arrives in the coordinator, it is assigned to a particular group. Let’s take a
look at the example:

"selectors": [
 {
 "queryType": "DATA_DEFINITION",
 "group": "ddl"

 },
 {
 "group": "ad-hoc"
 }
]

The first selector matches any query type of DATA_DEFINITION and assigns it to the
ddl resource group. The second selector matches all other queries and places those
queries in the ad-hoc resource group.

Resource Groups | 263

The order of the selectors is important because they are processed sequentially, and
the first match assigns the query to the group. And in order to match, all properties
specified must match. For example, if we switch the order of the selectors, then all
queries including DDL are to be assigned to the ad-hoc resource group. No queries
are ever assigned to the ddl resource group.

Resource Group Definition
Let’s take a closer look at the following configuration properties for resource groups:

name

The required name of the resource group, referenced by the selector rule for
assignment.

maxQueued

The required maximum number of queries queued for the group.

hardConcurrencyLimit

The required maximum number of concurrent queries that can be running in the
group.

softMemoryLimit

The required maximum amount of distributed memory that can be used by con‐
current running queries. Once this limit is reached, new queries are queued until
the memory reduces. Both absolute values (GB) and percentages (%) can be used.

softCpuLimit

The optional soft limit on the amount of CPU time that can be used within a
time period as defined by the cpuQuotaPeriod property. Once this limit is
reached, a penalty is applied to the running queries.

hardCpuLimit

The optional hard limit on the amount of CPU time that can be used within a
time period as defined by the cpuQuotaPeriod property. Once this limit is
reached, queries are rejected until the next quota period.

schedulingPolicy

The policy used to schedule new queries to select a query from the queue in the
resource group and process it. Details are provided in the following section.

schedulingWeight

This optional property is to be used in conjunction with schedulingPolicy.

jmxExport

Flag to cause resource groups to be exposed via JMX. Defaults to false.

264 | Chapter 12: Presto in Production

subGroups

A container for additional nested resource groups.

Scheduling Policy
The schedulingPolicy value noted in the preceding list can be configured to various
values to be run in the following modes:

Fair
Setting schedulingPolicy to fair schedules queries in a first-in, first-out (FIFO)
queue. If the resource group has subgroups, the subgroups with queued queries
alternate.

Priority
Setting schedulingPolicy to query_priority schedules queued queries based
on a managed priority queue. The priority of the query is specified by the client
by using the query_priority session property (see “Session Information and
Configuration” on page 146). If the resource group has subgroups, the subgroups
must also specify query_priority.

Weighted
Setting schedulingPolicy to weighted_fair is used to choose the resource
group subgroup to start the next query. The schedulingWeight property is used
in conjunction with this: queries are chosen in proportion to the scheduling
Weight of the subgroups.

Selector Rules Definition
Selector rules are required to define the group property, since it determines the
resource group to which a query is assigned. It is a good practice to have the last
selector in the file set to define only a group. It then acts as an explicit catchall group.

Optional properties and regular expressions can be used to refine the selector rules:

user

Matches against a username value. Regular expressions may be used to match
against multiple names.

source

Matches against the source value. For example, this may be presto-cli or
presto-jdbc. Regular expressions may be used.

queryType

Matches against the type of query. The available options are DATA_DEFINITION,
DELETE, DESCRIBE, EXPLAIN, INSERT, and SELECT.

Resource Groups | 265

clientTags

Matches against the client tags specified by the client submitting the query.

To set the source or client tags from the Presto CLI, you can use the --source and
--client-tags options:

$ presto --user mfuller --source mfuller-cli

$ presto --user mfuller --client-tags adhoc-queries

Conclusion
Well done! You have come a long way with Presto. In this chapter, you immersed
yourself in the details of monitoring, tuning, and adjusting Presto. Of course, there is
always more to learn, and typically these skills are improved with practice. Be sure to
connect with other users to exchange ideas and learn from their experience and join
the Presto community (see “Community Chat” on page 13).

And in Chapter 13, you get to find out what others have achieved with Presto already.

266 | Chapter 12: Presto in Production

CHAPTER 13

Real-World Examples

As you know from “A Brief History of Presto” on page 16, development of Presto
started at Facebook. Ever since it was open sourced in 2013, its use has picked up and
spread widely across a large variety of industries and companies.

In this chapter, you’ll see a few key numbers and characteristics that will give you a
better idea about the potential for your own use of Presto. Keep in mind that all these
companies started with a smaller cluster and learned on the go. Of course, many
smaller and larger companies are using Presto. The data you find here should just
give you a glimpse of how your Presto use can grow.

Also keep in mind that many platforms embed Presto. These platforms don’t even
necessarily expose the fact that Presto is under the hood. And these platforms do not
typically expose user numbers, architecture, and other characteristics.

The cited numbers and stats in this chapter are all based on pub‐
licly available information. The book repository contains links to
sources such as blog posts, presentations from conferences, slide
decks, and videos (see “Book Repository” on page 15). As you read
this book, the data may have become outdated or inaccurate. How‐
ever, growing use of Presto and the general content gives you a
good understanding of what is possible with Presto and how other
users successfully deploy, run, and use it.

Deployment and Runtime Platforms
Where and how you run your Presto deployment is an important factor. It impacts
everything from low-level technical requirements to high-level user-facing aspects.
The technical aspects include the level of direct involvement necessary to run Presto,
the tooling used, and the required operations know-how. From a user perspective, the

267

platform influences aspects such as overall performance, speed of change, and adap‐
tation to different requirements.

Last but not least, other aspects might influence your choice, such as use of a specific
platform in your company and the expected costs. Let’s see what common practices
are out there.

Where does Presto run? Here are some points to consider:

• Clusters of bare-metal servers are becoming rather rare.
• Virtual machines are most commonly used now.
• Container use is moving to be the standard and is posed to overtake VMs.

As a modern, horizontally scaling application, Presto can be found running in all the
common deployment platforms:

• Private on-premises clouds such as OpenStack
• Various public cloud providers including AWS, GCP, and Azure
• Mixed deployments

Here are some examples:

• Lyft runs Presto on AWS.
• Pinterest runs Presto on AWS.
• Twitter runs Presto on a mix of on-premises cloud and GCP.

The industry trend of moving to containers and Kubernetes has made an impact on
Presto deployments. An increasing number of Presto clusters run in that environ‐
ment and in the related public offerings for Kubernetes use.

Cluster Sizing
The size of some Presto clusters running at some of the larger users is truly astound‐
ing, even in this age of big data everywhere. Presto has proven to handle scale in pro‐
duction for many years now.

So far, we’ve mostly talked about running a Presto cluster and have hinted at the fact
that you can run multiple clusters.

268 | Chapter 13: Real-World Examples

When you look at real-world use of Presto at scale, you find that most large deploy‐
ments use multiple clusters. Various approaches to using multiple clusters are avail‐
able in terms of Presto configuration, data sources, and user access:

• Identical
• Different
• Mixed

Here are some advantages you can gain from identical clusters:

• Using a load-balancer enables you to upgrade the cluster without visible down‐
time for your users.

• Coordinator failures do not take the system offline.
• Horizontal scaling for higher cluster performance can include use of multiple

runtime platforms; for example, you might use an internal Kubernetes cluster at
all times and an additional cluster running in a Kubernetes offering from a public
cloud provider for peak usage.

Separate clusters, on the other hand, allow you to clearly separate different use cases
and tune the cluster in various aspects:

• Available data sources
• Location of cluster near data sources
• Different users and access rights
• Tuning of worker and coordinator configuration for different use cases—for

example, adhoc interactive queries compared to long-running batch jobs

The following companies are known to run several Presto clusters:

• Comcast
• Facebook
• Lyft
• Pinterest
• Twitter

Most other organizations mentioned in this chapter probably also
use multiple clusters. We just did not find a public reference to that
fact.

Cluster Sizing | 269

After having a look at the number of clusters, let’s look at the number of nodes. There
are some truly massive deployments and others at a scale you might end up reaching
yourself in the future:

• Facebook: more than 10,000 nodes across multiple clusters
• FINRA: more than 120 nodes
• LinkedIn: more than 500 nodes
• Lyft: more than 400 nodes, 100–150 nodes per cluster
• Netflix: more than 300 nodes
• Twitter: more than 2,000 nodes
• Wayfair: 300 nodes
• Yahoo! Japan: more than 600 nodes

Hadoop/Hive Migration Use Case
Probably still the most common use case to adopt Presto is the migration from Hive
to allow compliant and performant SQL access to the data in HDFS. This includes the
desire to query not just HDFS, but also Amazon S3, S3-compatible systems, and
many other distributed storage systems.

This first use case for Presto is often the springboard to wide adoption of Presto for
other uses.

Companies using Presto to expose data in these systems include Comcast, Facebook,
LinkedIn, Twitter, Netflix, and Pinterest. And here is a small selection of numbers:

• Facebook: 300 PB
• FINRA: more than 4 PB
• Lyft: more than 20 PB
• Netflix: more than 100 PB

Other Data Sources
Beyond the typical Hadoop/Hive/distributed storage use case, Presto adoption is
gaining ground for many other data sources. These include use of the connectors
available from the Presto project but also have significant use of other data sources
with third-party connectors from other open source projects, internal development,
and commercial vendors:

270 | Chapter 13: Real-World Examples

Here are some examples:

• Comcast: Apache Cassandra, Microsoft SQL Server, MongoDB, Oracle, Teradata
• Facebook: MySQL
• Insight: Elasticsearch, Apache Kafka, Snowflake
• Wayfair: MemSQL, Microsoft SQL Server, Vertica

Users and Traffic
Last but not least, you can learn a bit more about the users of these Presto deploy‐
ments and the number of queries they typically cause. Users include business analysts
working on dashboards and ad hoc queries, developers mining log files and test
results, and many others.

Here is a small selection of user counts:

• Arm Treasure Data: approximately 3,500 users
• Facebook: more than 1,000 employees daily
• FINRA: more than 200 users
• LinkedIn: approximately 1,000 users
• Lyft: approximately 1,500 users
• Pinterest: more than 1,000 monthly active users
• Wayfair: more than 200 users

Queries often range from very small, simple queries to large, complex analysis queries
or even ETL-type workloads. As such, the number of queries tells only part of the
story, although you nevertheless learn about the scale Presto operates:

• Arm Treasure Data: approximately 600,000 queries per day
• Facebook: more than 30,000 queries per day
• LinkedIn: more than 200,000 queries per day
• Lyft: more than 100,000 queries per day and more than 1.5 million queries per

month
• Pinterest: more than 400,000 queries per month
• Slack: more than 20,000 queries per day
• Twitter: more than 20,000 queries per day
• Wayfair: up to 180,000 queries per month

Users and Traffic | 271

Conclusion
What a wide range of scale and usage! As you can see, Presto is widely used across
various industries. As a beginning user, you can feel confident that Presto scales with
your demands and is ready to take on the load and the work that you expect it to
process.

We encourage you to learn more about Presto from the various resources, and espe‐
cially to also join the Presto community and any community events.

272 | Chapter 13: Real-World Examples

CHAPTER 14

Conclusion

Whatever your motivation for learning more about Presto, you’ve truly made great
progress. Congratulations!

We covered everything from an overview of Presto and its use cases, to installing and
running a Presto cluster. You’ve gained an understanding of the architecture of Presto
and how it plans and runs queries.

You learned about various connectors that allow you to hook up distributed storage
systems, RDBMSs, and many other data sources. The standard SQL support of Presto
then allows you to query them all, and even to combine the data from different sour‐
ces in one query, a federated query.

And you found out more about the next steps required to run Presto in production at
scale as well as about some real-world Presto use in other organizations.

We hope you are excited to put your knowledge into practice, and we look forward to
hearing from you on the community chat; remember to look up the details in “Com‐
munity Chat” on page 13.

Thanks for reading, and welcome to the Presto community!

Matt, Manfred, and Martin

273

Index

Symbols
!= (not equal operator), 171
% (modulus operator), 174
* (multiplication operator), 174
+ (addition operator), 174, 184
- (subtraction operator), 174, 184
/ (division operator), 174
< (less than operator), 171
<= (less than or equal operator), 171
<> (not equal operator), 171
= (equal operator), 171
= (equality condition), joining tables over, 64
> (greater than operator), 171
>= (greater than or equal operator), 171
|| (concatenating operator), 176

A
abs() function, 174
access control

authorization, 200, 203-208, 220
certificate authentication, 211-215, 219-221
Kerberos, 226
password and LDAP authentication,

200-203
access, data, 9

(see also connectors)
access-control.properties file, 204, 205
Accumulo, 110-117
acos() function, 175
addition operator (+), 174, 184
aggregations

functions, 187-190
partial, 59, 253
query plan example, 52

AI (artificial intelligence) (use case), 12
Airflow, 231
ALL keyword, 162
ALL PRIVILEGES, 207
ALL subqueries, 167
ALTER SCHEMA statement, 138
ALTER TABLE statement, 144
Amazon, 17
Amazon Athena, 231-234
Amazon EC2, 232
Amazon Kinesis, 120
Amazon S3, 96, 98, 231-234
Amazon Web Services (see AWS)
analysis of queries, 54
analytics access point, single (use case), 7
ANALYZE command, 70, 71
AND operator, 172
ANSI SQL standard, 36
ANY subqueries, 166
Apache Accumulo, 110-117
Apache Airflow, 231
Apache Cassandra, 104, 110, 117
Apache Hadoop (see Hadoop)
Apache Hbase, 109
Apache Hive (see Hive)
Apache Kafka, 118-120
Apache Phoenix, 109
Apache Spark, 261
Apache Superset, 229
Apache ZooKeeper, 110, 111, 113
applicationNamePrefix property, JDBC driver,

34
approximate aggregate functions, 189
approx_distinct function, 190

275

approx_percentile function, 190
architecture, Presto, 43-72

catalogs, schemas, and tables, 48
cluster with coordinator and workers, 43-44
connector-based, 47-48
coordinator, 45
cost-based optimizer, 62-70
discovery service, 46
implementation rules, 60-61
optimization rules, 57-59
query execution model, 48
query planning, 53-56
table statistics, 70-72
workers, 46

archive file, installing Presto from, 20-22
ARRAY data type, 149
artificial intelligence (see AI)
asin() function, 175
at rest, encrypted data, 210
AT TIME ZONE operator, 184
atan() function, 175
atan2() function, 175
Athena, 231-234
authentication

certificates, 211-215, 219
Kerberos, 226
password and LDAP authentication,

200-203
RDBMS connectors, 92

authorization, 200, 203-208, 220
avg() function, 187
aws athena get-query-results command, 234
AWS Glue, 231, 234
AWS Identity and Access Management, 122
AWS Redshift connector, 91

B
BatchScanner object, 112
BETWEEN statement, 173
big data, Presto’s approach to, 3-12
BIGINT data type, 147
BigTable, 110
bin directory, installing Presto, 21
binary operators, 170, 172
bind operation, 202
black hole connector, 106
blob storage, 96
BOOLEAN data type, 147
Boolean operators, 171

broadcast join strategy, 68
buffer sizes, network data exchange, 260
build side of joined table, 64
business intelligence, 4

C
CA (certificate authority), 213, 217-218
Capriolo, Edward

Programming Hive (O’Reilly), 94
CASCADE keyword, 138
Cassandra, 104, 110, 117
Cassandra Query Language (see CQL)
CAST function, 154
catalog directory, 23, 96
--catalog option, 28
catalogs

applicability to every data source, 86
characteristics, 136
connector setup example, 87
defined, 37
purpose, 23, 85
query statements for, 37-40
securing, 224-225
SHOW CATALOGS statement, 132, 136
system internal metadata, 27
tpch catalog, 27

CBO (cost-based optimizer), 62-70
broadcast join strategy, 68
cost concept, 62-64
distributed join strategy, 69
filter statistics, 66
join cost, 64
join enumeration, 68
partitioned tables, statistics for, 67
performance tuning, 253
table statistics, 65, 70-72

cbrt() function, 174
ceiling() function, 174
certificate authentication, 211-215, 219-221
certificate authority (see CA)
certificate chain, 217
CHAR CHAR() data type, 148
chkconfig command, 81
chr() function, 176, 178, 178
CLI (command-line interface), Presto, 19,

25-30, 80
client-to-coordinator communication, security,

211-215, 219-221, 222
cloud installation, 82

276 | Index

clusters
coordinators and workers structure, 43-44
creating, 73-76, 82
encrypting communication within, 216-217,

223
installing Presto, 79-80
K8s, 82, 268
kerberized Hadoop cluster authentication,

226
Presto Web UI to view details, 240
separation for security, 227
sizing of, 83, 268-270
Web UI cluster-level details, 240

codepoint() function, 176, 179
collection data types, 149
column family (Accumulo), 114
columns

identifying those used in query, 54
indexing on, 117
JMX connector, 105
modifying a table, 144
SHOW COLUMNS statement, 132
statistics, 65
subquery restrictions, 166

column_mapping table property, 114
command-line interface (see CLI)
community chat, Presto resource, 13
complex data types

collections as, 149
unnesting, 182-182

concat() function, 176
concatenating operator (||), 176
concurrency, adjusting, 260
config.properties file

access control, 201, 212, 216, 222
cluster installation, 79, 219
deployment configuration, 73
installing Presto, 22
session, 146

configuration
connectors, 86
initial configuration file setup, 22
JVM, 77
logging, 75-76
node, 76, 80
RPM, 82
for security, 224-225
server, 73-76
session, 146

workers, 79
connecting to Presto, 32
connector.name property, 23, 24, 86
connectors, 85-108

access control, 207-208
Apache Cassandra, 117
authentication, 92, 224
black hole connector, 106
catalogs and, 136
configuration, 86
data type support variations, 147
defined, 37
document store, 104, 120-122
ETL, 129
examples, 109-129
federated queries, 122-129
Hbase with Phoenix, 109
Hive (see Hive connector)
in Presto architecture, 47-48
JMX connector, 104-106
key-value store, 110-117
mapping tables, 139
memory connector, 107
non-relational data sources, 104
parallel, 90
Phoenix, 109
PostgreSQL RDBMS example, 87-92
purpose, 85
sources for other, 107
specific command support differences, 132
streaming system, 118-120
table limitations with, 144
TPC-H and TPC-DS connectors, 92

constant functions, 176
containers, as Presto deployment platforms, 19,

268
coordinator property, 74, 79
coordinators, 45

client-to-coordinator security, 211-215,
219-221, 222

configuration of, 79
data source access control, 224-225
defined, 44
HTTPS access to, 202, 210-213, 216
query execution role of, 49

correlated subquery, 165
cos() function, 175
cosh() function, 175
cost-based optimizer (see CBO)

Index | 277

count() function, 187
CQL (Cassandra Query Language), 117
CREATE SCHEMA statement, 137
CREATE TABLE AS (CTAS) query, 100, 119,

143
CREATE TABLE AS SELECT, 100
CREATE TABLE AS statement, 118
CREATE TABLE statement, 103, 140
cross join elimination, 58
CrossJoin operation, 55, 58, 160
CSR (certificate signing request), 217
CTAS (CREATE TABLE AS) query, 100, 119,

143
CUBE operation, 162
current_date function, 186
current_time function, 186
current_timetimestamp or now() function, 186
current_timezone() function, 186
custom Presto integrations, 236

D
dashboard, Presto Web UI, 240-242
data definition language (see DDL)
data lake, Presto as query engine for, 11
data location SPI, 50
data sources, 23

(see also connectors)
access control, 224-225
adding, 23
catalogs as applicable to all, 86
non-relational, 104
Presto as single access point for, 8

data storage (see storage)
data types, 147-154

Boolean, 147
collection, 149
fixed-precision, 147
floating point, 147
integer, 147
string, 148
temporal, 150-153
type casting, 154
unnesting, 182-182

data warehouse
access point use case, 8
overview, 4
Presto as virtual, 10

data, moving with Presto, 11
databases

access control for individual, 224
distributed, 104, 110, 117
Elasticsearch document store, 120-122
memory connectors as, 107
RDBMS, 87-92, 123-129, 145, 195

date and time functions and operators, 184-186
DATE data type, 150
DAY TO SECOND interval, 153, 184
DBeaver, 30, 31
DDL (data definition language), 97
DEBUG log level, 75
--debug option, 28
DECIMAL data type, 147
degrees() function, 174
DELETE privilege, 207
DELETE statement, 167
deleting data from a table, 167
deleting tables, 144
deployment considerations, 73-84

cloud installation, 82
cluster installation, 79-80
configuration details, 73
JVM configuration, 77
launcher, 77-78
logging, 75-76
node configuration, 76, 79
platforms for, 19, 267
RPM installation, 80-82
server configuration, 73-76
sizing the cluster, 83, 268-270

DESCRIBE command, 121, 195
different separated clusters, 269
directory structure, installing, 81
discovery service, 44, 46, 74
discovery-server.enabled property, 74
discovery-uri property, 79
discovery.uri property, 75
DISTINCT keyword, 162, 191
distinguished name, 202
distributed join strategy, 69
distributed query plan, 50-52
distributed storage systems, 104

(see also HDFS)
Cassandra, 104, 110, 117
federated queries, 123-129

division operator (/), 174
Docker container, 19
document stores, 104, 120-122
DOUBLE data type, 147

278 | Index

drivers
JDBC, 30-34, 91, 110
query execution role of, 52

DROP SCHEMA statement, 138
DROP TABLE statement, 144
dynamic partitioning, 101

E
e() constant, 176
EC2 (Elastic Compute Cloud), 232
Elasticsearch, 104, 120-122
embedded Presto, 231
EMR (AWS Elastic Map-Reduce), 17
encryption, 209-217
end-user impersonation, 225
enumeration algorithm, documentation for, 70
equal operator (=), 171
equality condition (=), joining tables over, 64
equivalent query plans, 54
ERROR log level, 75
etc directory, installing Presto, 22
ETL (extract, transform, and load) processes,

11, 102, 129
event-streaming systems, 118-120
EXCEEDED_GLOBAL_MEMORY_LIMIT

error message, 256
EXCEEDED_LOCAL_MEMORY_LIMIT error

message, 256
EXCEPT clause, 162
exchange.client-threads property, 260
exchange.max-buffer-size property, 260
EXECUTE command, 194
--execute option, 29
EXISTS subquery, 166
exp() function, 174
EXPLAIN statement, 133
external tables

Accumulo, 115
creating, 101
Hive, 98

F
-f option, 29
Facebook, and Presto development, 16-17
federated queries, 10, 122-129
file formats and compression, Hive connector,

102
file-based system access control, 204
Filter operation, 55, 57

filter statistics, 66
FilterProject operation, 55
fixed-precision data type, 147
flight data set, 16
floating point data type, 147
floor() function, 174, 188
FOR clause, 132
FROM clause, 132
from_iso8601_date() function, 184
from_iso8601_timestamp() function, 184
from_unixtime() function, 186
from_utf8() function, 178
full-text search (Elasticsearch), 122
functions, 170-171, 174-193

aggregate, 187-190
constant, 176
date and time, 184-186
geospatial, 193
JSON, 183
mathematical, 174
random, 176
scalar, 170
SHOW FUNCTIONS statement, 132
string, 176, 180
trigonometric, 175
unicode-related, 178-179
user-defined, 171
window, 190-192

G
GC (garbage collection), JVM, 261
geospatial functions, 193
Google BigTable, 110
GRANT command, 207
greater than operator (>), 171
greater than or equal operator (>=), 171
GROUP BY clause, 53, 158
group memberships, authorization, 203
GROUPING operation, 162
GROUPING SETS operation, 162
GZIP compression codec, 103

H
Hadoop, 94-95, 97, 270

(see also HDFS)
Hadoop YARN, 94
hardConcurrencyLimit property, resource

groups, 264
hardCpuLimit property, resource groups, 264

Index | 279

hash join, 64, 68
HAVING clause, 158
Hbase, 109
HDFS (Hadoop Distributed File System)

Accumulo’s use of, 110
data lake and, 11
Hive connector and, 94-96
Kerberos authentication, 225
as object-storage system owner, 98
Presto and, 6
role in big data systems, 5

help command, 20
--help option, configuration files, 78
heuristic-based optimizations, 253
histogram() function, 187
histograms, 186
history of command usage, accessing, 28
Hive

external tables, 98
HMS, 94-96, 98, 103
migration use case, 270
origins, 16, 94

Hive connector, 94-104
distributed and relational database connec‐

tion, 123
file formats and compression, 102
gathering statistics when writing to disk, 71
Kerberos authentication, 222, 225
loading data, 100
managed and external tables, 97-98
partitioned data, 98-100
in Presto architecture, 95-96
table format, 96, 99
table statistics, 70

Hive runtime, 94
hive.hdfs.presto.keytab property, 227
hive.hdfs.presto.principal property, 227
hive.metastore.client.keytab property, 226
hive.metastore.client.principal property, 226
hive.metastore.service.principal property, 226
hive.non-managed-table-writes-enabled prop‐

erty, 101
hive.storage-format, catalog properties file, 103
HLL (HyperLogLog) algorithm, 190
HMS (Hive Metastore Service), 94-96, 98, 103
horizontal scalability, 120
HTTP

disabling after securing communication,
217

port number for Presto, 35
http-request.log file, 76
http-server.authentication property, 222
http-server.authentication.type property, 201
http-server.http.port property, 74
http-server.https.keystore.key property, 214
http-server.https.keystore.path property, 214
http.server.authentication.krb5.service-name

property, 222
HTTPS access to Presto coordinator, 202,

210-213, 216
HyperLogLog algorithm (see HLL)

I
identical clusters, 269
IF EXISTS clause, 138
--ignore-error, 30
implementation rules, query plan, 60-61
in motion, encrypted data, 209
IN predicate, to decorrelate, 61
IN subquery, 166
INCLUDING PROPERTIES, in copying a table,

142
indexes

Elasticsearch, 120
for query pushdown, 88
secondary, 115

infinity() constant, 176
INFO log level, 75
information schema, 138
InnerJoin operation, 57
INSERT INTO statement, 140
INSERT INTO … SELECT, 100
INSERT INTO … VALUES, 100
INSERT privilege, 207
INSERT SELECT statement, 100, 118
INSERT statement, 140
installing Presto, 19-22, 80-82
integer data types, 147
INTEGER, INT data type, 147
intermediate certificates, 217
internal table, 115
INTERSECT clause, 162
INTERVAL data type, 152
INTERVAL DAY TO SECOND data type, 150
INTERVAL YEAR TO MONTH data type, 150
iris data set, 15
IS (NOT) NULL statement, 174
ISO 8061 for time strings, 184

280 | Index

is_json_scalar() function, 183

J
Java keystores and truststores, 213-215
Java pattern syntax, 180
Java Virtual Machine (see JVM)
java.security.krb5.conf JVM property, 225
JavaScript Object Notation (see JSON)
JDBC (Java Database Connectivity) driver,

30-34, 91, 110
JDK (Java Development Kit), 214
JMX (Java Management Extensions), 104-106
jmxExport property, resource groups, 264
JOIN statement, 160
joins

broadcast vs. distributed, 68
cost of, 64
CrossJoin operation, 55, 57, 58, 160
enumeration of, 68
hash join, 64, 68
lateral join decorrelation, 60
performance tuning queries, 252-253
semi-join (IN) decorrelation, 61

JSON (JavaScript Object Notation), 119, 183,
251, 262

JSON data type, 149
json_array_contains() function, 183
json_array_length() function, 183
JVM (Java Virtual Machine)

configuration with/in, 77
installing Presto, 20
JDBC in, 30
memory management, 254
performance tuning, 260-262

jvm.config file, 23, 77, 225, 260

K
K8s (Kubernetes), 82, 268
kadmin command, 223
Kafka, 118-120
KDC (Kerberos key distribution center), 222
Kerberos authentication protocol, 222, 226
Kerberos principal, 206, 223
key-value data stores, connector to, 110-117
keyspaces, Cassandra, 118
keystore.jks file, 214
keystores, Java, 213-215, 216, 220
keytab file, Kerberos, 222, 223
keytool command, 214

krb5.conf file, 225
Kubernetes (see K8s)

L
lambda expressions, 192
lateral join decorrelation, 60
LateralJoin operation, 56
launcher script, 77-78, 81
launcher.log file, 75
LDAP (Lightweight Directory Access Protocol),

200-203
LDAPS (secure LDAP), 202
length() function, 176
less than (<) operator, 171
less than or equal operator (<=), 171
lib directory, installing Presto, 21
licensing, Presto, 14
LIKE clause, 132, 142
LIKE operator (SQL), 179
LIMIT clause, 58, 159
Linux, Presto installation on, 80-82
Live Plan tab, Query Details section, 248
ln() function, 174
loading data

Accumulo, 115
Hive connector, 100

local worker scheduling, 259
localtime function, 186
localtimestamp function, 186
log() function, 174
log.properties file, 75
log10() function, 174
log2() function, 174
logging, 75-76
logical operators, 172
logical query plan, 50
lower() function, 176
lpad() function, 176
ltrim() function, 176

M
machine learning (use case), 12
managed tables, Hive, 97-98
map aggregate functions, 187-189
MAP data type, 149
mapping tables, 114, 139
MapReduce programs, 94
maps and strings, 177
map_agg() function, 187, 188

Index | 281

map_union() function, 187, 189
massively parallel processing database (see

MPP)
mathematical functions and operators, 174
Maven Central Repository, 21, 32
max() function, 187
maxQueued property, resource groups, 264
memory connector, 107
memory management, 254-257, 260, 262-266
memory, cost-based optimizer and, 64
memory.heap-headroom-per-node property,

256
metadata

Hive, 94
information schema, 138
in query execution model, 49
system internal catalog, 27

metastore service, 226
Microsoft SQL Server connector, 91
migration of data, 118, 270
min() function, 187
MinIO, 103
mod() function, 174
modulus operator (%), 174
MongoDB, 120, 122
monitoring with Presto Web UI, 239-251
MPP (massively parallel processing) database,

43
MSCK REPAIR TABLE command, 101
multimap_agg() function, 187
multiplication operator (*), 174
mutual TLS, 219
-mx option, node.jvm.config file, 77
MySQL connector, 91

N
name property, resource groups, 264
nan() constant, 176
network data exchange, 259
node-level data assignment, hash join, 64
node-scheduler property, 79
node-scheduler.include-coordinator property,

74
node-scheduler.max-pending-splits-per-task

property, 259
node-scheduler.max-splits-per-node property,

259
node-scheduler.network-topology property,

259

node.data-dir property, 76
node.environment property, 76
node.id property, 76
node.properties file, 22, 76, 81
nodes

cluster architecture for Presto, 43
configuration, 76, 79
large-scale deployments, 270
worker scheduling, 259

nodes system table, 80
NONE compression setting, 103
normalization forms, 178
normalize() function, 178
NoSQL systems, 104
not equal operator (!=), 171
not equal operator (<>), 171
NOT EXISTS subquery, 166
NOT operator, 172
NULL value, use with logical operators, 173

O
object-based storage systems, 9, 97
objects, HDFS, 94
ODBC (Open Database Connectivity), 35
OGC (Open Geospatial Consortium), 193
OLAP (online analytical processing), 5
OLTP (online transaction processing), 5
operating systems

black hole connector, 106
installation on Linux, 80-82

operators, 39, 169-186
binary, 170, 172
Boolean, 171
date and time, 184-186
LIKE (SQL), 179
logical, 172
mathematical, 174
query execution role of, 52
scalar, 170
string, 176
unary, 170, 172

optimization
cost-based optimizer, 62-70, 253
heuristic-based, 253
query rules, 57-59
of workers, 258

optimizer.join-reordering-strategy property,
252

optimizer.max-reordered-joins parameter, 253

282 | Index

OR operator, 172
ORDER BY clause, 53, 58, 159, 187
ordering tables with cost-based optimizer, 65
OutOfMemoryError, node.jvm.config file, 77
output formats, 30
OVER() window function, 191

P
pages, relationship to stages, 51
pagination of queries, 28
parallel connectors, 90
parsing

data and time data types, 150
queries, 54

partial aggregations, 59, 253
PARTITION BY statement, 191
_partition_id (Kafka), 119
_partition_offset (Kafka), 119
partitioned_by clause, 99
partitions

creating, 101
for nested arrays in ANALYZE, 71
Hive connector, 98-100
table statistics, 67

--password, 203
password authentication, 201-203
password property, JDBC driver, 33
password-authenticator.name property, 202
password-authenticator.properties file, 201, 203
performance

cluster, 83
Presto's design for, 5
RubiX for improvements in, 230

performance tuning, 251-266
JVM, 260-262
memory management, 254-257
network data exchange, 259
query, 85, 251-254
query tuning, 134
resource groups, 262-266
task concurrency, 258
worker scheduling, 258

Phoenix, 109
pi() constant, 176
pipeline, 51
plugins directory, installing Presto, 21
plugins, function in Presto, 48
PostgreSQL, 70, 87-92, 123-128
power() function, 174

pre-aggregation, 59
predicate pushdown, 57, 115-117, 128
PREPARE statement, 194
prepared statements, 194
Presto

advantages of, 4-12
architecture, 43-72
big data approach of, 3
CLI, 19, 25-30, 80
client libraries, 35
configuration, 22
connectors, 85-108
history, 16
installation, 19-22, 80-82
integrations, 229-236
JDBC driver, 30-34, 91, 110
ODBC and, 35
performance tuning, 251-266
production-ready deployment, 73-84
resources, 12-16
running, 24, 80
security, 199-227
SQL in, 36-40, 131-167, 169-195
uninstall for, 82
use cases, 7-12
Web UI, 35, 134, 239-251

Presto ANALYZE command, 70
Presto CLI (see CLI)
Presto Software Foundation, 12, 17
prestosql organization, 14
privileges, access, 203, 207-208
probe side of joined table, 64
Programming Hive (O’Reilly), 94
protocols

Kerberos authentication, 222, 226
LDAP, 201-203
rubix://, 230

public-private key pairs, encryption, 212
publish-subscribe (pub/sub) systems, 118
push_aggregation_through_join property, 253
push_partial_aggregation_through_join session

toggle, 59
Python, 21, 77

Q
quantified subquery, 166
queries

analysis of, 54
Apache Superset, 229

Index | 283

connector implementation’s effect on, 85
DBeaver, 30, 31
distributed query plan, 50-52
Elasticsearch, 120
executing, 28, 48-52
federated, 10, 122-129
indexes for pushdown, 88
optimization rules, 57-59
pagination of, 28
performance tuning, 251
SQuirrel SQL Client, 31-34
statements for catalogs, 37-40
states of processing, 243
subqueries, 53, 61, 165-167
tuning, 134
Web UI tools, 241-251

query compute resources, separation from stor‐
age, 7

query execution role of, 52
query plan, 53-56, 62-70, 251
query pushdown, 88
query.low-memory-killer.policy, 257
query.max-memory property, 74, 255
query.max-memory-per-node property, 74, 255
query.max-total-memory property, 255
query.max-total-memory-per-node property,

74, 255

R
radians() function, 174
random functions, 176
random() function, 176
range selection with BETWEEN statement, 173
RDBMS (relational database management sys‐

tem)
federated queries, 122-129
PREPARE statement vs. Presto, 195
Presto’s ability to query, 87-92
views and Presto, 145

read-only access, 204
reading data

with Accumulo, 115
testing Presto performance, 106

REAL data type, 147
regexp_extract() function, 180
regexp_extract_all() function, 180
regexp_like() function, 180
regexp_replace() function, 180
regexp_split() function, 180

regular expressions (regex), 179-181
relational database management system (see

RDBMS)
replace() function, 176
resource groups, 262-266
response times and insights (use case), 11
REST-based interactions over HTTP/HTTPS,

44
reverse() function, 176
REVOKE command, 208
role, in access authorization, 208
ROLLUP operation, 162
round() function, 174
ROW data type, 149
rows

identifying references to fields within ROW
values, 54

indexes for looking up IDs in Accumulo,
115

subquery restrictions, 166
rpad() function, 176
rpm command, 81
RPM Package Manager, 80-82
rtrim() function, 176
RubiX data-caching framework, 230
rubix:// protocol, 230
run command, 77
running Presto, 24, 80
runtime example platform, 268

S
S3 (Simple Storage Service), 96, 98, 231-234
SASL (Simple Authentication and Security

Layer), 226
scalability

Hadoop, 94
Presto's design for, 5, 7

scalar functions and operators, 170
scalar subquery, 165
ScanProject operation, 55
scheduling policy, 265
scheduling workers, 258
schedulingPolicy property, resource groups,

264
schedulingWeight property, resource groups,

264
--schema option, 29
schemas

Cassandra’s keyspaces and, 118

284 | Index

defined, 37
Hive-style table format, 96
in Presto, 137-139
querying Elasticsearch, 121
SHOW SCHEMAS statement, 132
specifying, 27
TPC-H, 92

secondary indexes, 115
secure LDAP, 202
security, 199-227

authorization, 200, 203-208, 220
certificate authentication, 211-215, 219-221
certificate authority vs. self-signed certifi‐

cates, 213, 215, 217-218
cluster separation, 227
data source access and configuration for,

224-225
encryption, 209-217
Kerberos authentication, 222, 226
password and LDAP authentication,

201-203
RDBMS connector example, 92

security principals, 204
security.config-file property, 205
_segment_count (Kafka), 119
_segment_end (Kafka), 119
_segment_start (Kafka), 119
SELECT privilege, 207
SELECT statement, 53, 140, 155
selector rules, 262, 265
select_expr, 155
self-signed certificates vs. certificate authority,

213, 215, 217-218
semantic layer for virtual data warehouse (use

case), 10
semi-join (IN) decorrelation, 61
server configuration, 73-76
server verification of certificates, 219-221
server.log file, 76
serverless architecture, Athena, 232
servers (see coordinators)
service command, 81
service provider interface (see SPI)
session information and configuration, 146
set operations, 161
SET ROLE command, 208
shards, Elasticsearch, 121
SHOW CATALOGS statement, 132, 136
SHOW COLUMNS statement, 132

SHOW FUNCTIONS statement, 132
SHOW SCHEMAS statement, 132
SHOW statement, 142
SHOW STATS command, 72
SHOW STATS FOR statement, 133
SHOW TABLES statement, 132
Simple Authentication and Security Layer (see

SASL)
Simple Storage Service (see S3)
sin() function, 175
single SQL analytics access point (use case), 7
sink.max-buffer-size property, 260
sizing the cluster, 83, 268-270
SMALLINT data type, 147
SNAPPY compression codec, 103
softCpuLimit property, resource groups, 264
softMemoryLimit property, resource groups,

264
SOME subqueries, 166
Sort operation, 56
source code, Presto, 14
source systems, access point use case, 8
source tasks, 51
Spark, 261
SPI (service provider interface), 47, 49, 85
split (unit of data for a task), 51, 112, 259
split() function, 176
Splits view, Query Details section, 251
split_to_map() function, 177
split_to_multimap() function, 177
SQL (Structured Query Language), 131-167

Boolean operators, 171
catalogs, 136
conversions and ETL (use case), 11
coordinator’s function and, 45
data types, 147-154
deleting data from a table, 167
GROUP BY and HAVING clauses, 158-159
grouping operations, 162
histograms, 186
Hive and, 94
JOIN statements, 160
lambda expressions, 192
logical operators, 172
ORDER BY and LIMIT clauses, 159
performance tuning queries, 251-254
prepared statements, 194
Presto’s relationship to, 36-40

Index | 285

range selection with BETWEEN statement,
173

regular expressions, 179-181
schemas, 137-139
SELECT statement, 155
session information and configuration, 146
single analytics access point (use case), 7
statements, 132
string functions and operators, 177
subqueries, 165-167
system tables, 134-136
tables, 139-145
unicode, 178-179
UNION, INTERSECT, and EXCEPT clau‐

ses, 161
unnesting complex data types, 182-182
value detection with IS (NOT) NULL, 174
views, 145
WHERE clause, 53, 100, 157, 167
WITH clause, 103, 114, 140, 164

SQL Lab query editor, 229
SQL pushdown, 88
SQL-on-Anything capability, 9, 85
sqrt() function, 174
SQuirreL SQL Client, 31-34
SSL (Secure Sockets Layer), 210
SSL property, JDBC driver, 33
SSLTrustStorePassword property, JDBC driver,

33
SSLTrustStorePath property, JDBC driver, 33
Stage Performance view, Query Details section,

249
stages, query execution plan, 51
Starburst Enterprise Presto, 235
start-query-execution Athena command, 233
statements, 132, 194

(see also individual statements by name)
statistics

filter, 66
partitioned tables, 67
in query execution model, 50
SHOW STATS FOR statement, 133
table, 65, 70-72

status command, 78
stderr server stream, 75
stdout server stream, 75
storage

Amazon S3, 96, 98, 231-234
object-based systems, 9, 97

separation from query compute resources, 7
streaming system connector (Kafka), 118-120
string data types, 148
strings and maps, 177
strings, regular expression functions, 180
strpos() function, 176
Structured Query Language (see SQL)
subdomains, creating certificates to include,

215
subGroups property, resource groups, 265
subqueries

decorrelating with IN, 61
EXISTS, 166
quantified, 166
query planning example, 53
scalar, 165

substr() function, 176
subtraction operator (-), 174, 184
sum() function, 187
Superset, 229
syntactic optimizer, 62
system access control, 204-206
system catalog, 37
system internal metadata catalog, 27
system memory, 255
system tables, 134-136
system.runtime.queries table, 134
system.runtime.tasks table, 134

T
table format, Hive connector, 96
tables

catalogs and, 136
copying, 142
creating from query results, 143
defined, 37
deleting, 144
deleting data from, 167
external, 97-98
identifying those used in query, 54
managed, 97-98
mapping, 114, 139
Presto definitions, 139
SHOW TABLES statement, 132
statistics, 65, 67, 70-72
system, 134-136

TableScan operation, 55
tan() function, 175
tanh() function, 175

286 | Index

task concurrency, 258
task.currency property, 258
task.max-partial-aggregation-memory prop‐

erty, 254
task.max-worker-threads property, 258
tasks, query execution plan, 51-52
temporal data types, 150-153
Teradata, 17
time and date functions and operators, 184-186
TIME data type, 150
TIME WITH TIME ZONE data type, 150
time zones, 150, 151, 184
TIMESTAMP data type, 150, 184
TIMESTAMP WITH TIMEZONE data type,

150
TINYINT data type, 147
TLS (Transport Layer Security), 202, 210-212,

216, 219
TopN, 58, 127
to_iso8601() function, 184
to_milliseconds() function, 186
to_unixtime() function, 186
to_utf8() function, 178
TPC-DS (TPC Benchmark DS) connector, 92
TPC-H (TPC Benchmark H) connector, 23, 92
tpch catalog, 27
traffic and users, information on, 271
Transaction Processing Performance Council,

92
Transport Layer Security (see TLS)
trigonometric functions, 175
trim() function, 176
truncate() function, 174
truststores, Java, 213-215, 217
try_cast function, 154
type casting, 154

U
UDFs (user-defined functions), 171
unary operators, 170, 172
unicode-related functions, 178-179
UNION clause, 161, 163
Unix-based operating systems, black hole con‐

nector, 106
UNNEST operation, 149, 182
upper() function, 176
use cases, Presto, 7-12
USE command, 126
USE statement, 132

user memory, 255
user property, JDBC driver, 33
user-defined functions (see UDFs)
userPassword attribute, 203
users

authentication of, 200-203
authorization for, 203-208
querying for information on, 271

USING keyword, 194

V
value detection with IS (NOT) NULL, 174
var directory, installing Presto, 22
VARCHAR/VARCHAR() data type, 148
versions

Java requirement, 20
Presto, 14, 21
Presto CLI, 25
Python requirement, 21

views, 145
visualizations of data (Superset), 229

W
WARN log level, 75
Web UI, 239-251

availability of, 35
cluster-level details, 240
query details view, 244-251
query list, 241-244
system table information, 134

web.pages (Kafka), 119
web.users (Kafka), 119
wget command, 81
WHERE clause, 53, 100, 157, 167
width_bucket() function, 186
wildcard certificate, 214
window functions, 190-192
WITH clause, 103, 114, 140, 164
WITH GRANT OPTION, 207
WITH NO DATA clause, 144
word_stem() function, 176
workers, 46

configuring, 79
defined, 44
managing for memory optimization, 257
scheduling, 258

workflow monitoring, Apache Airflow, 231
workload, memory management and, 255, 257
writing to disk, gathering statistics while, 71

Index | 287

X
X.509 certificate, 214

Y
YARN, 94

YEAR TO MONTH interval, 152, 184

Z
ZooKeeper, 110, 111, 113

288 | Index

About the Authors
Matt Fuller is a cofounder at Starburst, the Presto Company. Prior to founding Star‐
burst, Matt was a director of engineering at Teradata, where he worked to build the
new Center for Hadoop division within the company. As a major part of this, Matt
worked to bring Presto to the enterprise market. Matt has managed a team contribu‐
ting to the open source Presto project since 2015 and led the internal Presto product
roadmap. Starburst was later formed from this team at Teradata.

Before Teradata, Matt was an early engineer at Vertica, where he co-built the query
optimizer. Matt is also a Very Large Databases (VLDB) published author and has US
patents in the database management systems space.

Manfred Moser is a community advocate, writer, trainer, and software engineer at
Starburst. Manfred has a long history of developing and advocating open source soft‐
ware. He is an Apache Maven committer, wrote the Hudson book and others, and
continues to be active in the open source community and his projects. He is a seas‐
oned trainer and conference presenter for CI/CD, Cloud Native, Agile, and other
software development tools and processes, having trained well over 20,000 developers
for companies including Walmart Labs, Sonatype, and Telus.

His database background includes designing databases and related applications in the
RDBMS space and working as business intelligence consultant wrangling thousands
of lines of SQL by hand. He is glad he can use Presto now, and is spreading the word
about how great Presto is.

Martin Traverso is the cofounder of the Presto Software Foundation and CTO at
Starburst. Prior to Starburst, Martin worked as a software engineer at Facebook
where he saw the need for fast interactive SQL analytics. Martin and three other engi‐
neers worked to create what became Presto. Martin led the Presto development team,
and in the spring of 2013 Presto was rolled out into production, later made open
source in the fall of 2013. Since then, Presto has gained wide adoption both internal
and external to Facebook.

Prior to Facebook, Martin was an architect at Proofpoint and Ning, where he led
development and architecture design of numerous complex enterprise and social net‐
work applications.

Colophon
The animal on the cover of Presto: The Definitive Guide is a southern leopard frog
(Lithobates sphenocephalus). These true frogs are native to eastern North America.
They range from New York south to Florida, and as far west as eastern Oklahoma,

and can be found near freshwater habitats and moist vegetation in the summer
months.

The southern leopard frog is known for its distinctive round spots all along its green
and brown body. It has a pointed head and notably long legs, as well as prominent
ridges of raised skin that extend from behind its eyes to its hips. The female southern
leopard frog tends to be larger than the male frog. Both lack digital pads on their toes.

These nocturnal frogs primarily eat small, invertebrate insects and spiders, though
larger southern leopard frogs will occasionally eat small vertebrates as well. During
the day, they hide in vegetation near bodies of fresh water. They often hop in sequen‐
ces of three, and jump notably high. They congregate in large colonies during breed‐
ing season, but are otherwise solitary animals. They have paired vocal sacs, which are
spherical when inflated, and have a short, guttural trill, often compared to the clucks
of a chicken. The call of the southern leopard frog travels farther than that of many of
its related species.

The southern leopard frog is prey to birds, river otters, some fish, and many snake
species, and is collected in large numbers for use as bait, scientific research, and
teaching. Though their conservation status is “Least Concern” at the time of writing,
many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Jose Marzan, based on a black and white engraving from
Wood’s Natural History. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	About the Book
	Conventions Used in This Book
	Code Examples, Permissions, and Attribution
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Getting Started with Presto
	Chapter 1. Introducing Presto
	The Problems with Big Data
	Presto to the Rescue
	Designed for Performance and Scale
	SQL-on-Anything
	Separation of Data Storage and Query Compute Resources

	Presto Use Cases
	One SQL Analytics Access Point
	Access Point to Data Warehouse and Source Systems
	Provide SQL-Based Access to Anything
	Federated Queries
	Semantic Layer for a Virtual Data Warehouse
	Data Lake Query Engine
	SQL Conversions and ETL
	Better Insights Due to Faster Response Times
	Big Data, Machine Learning, and Artificial Intelligence
	Other Use Cases

	Presto Resources
	Website
	Documentation
	Community Chat
	Source Code, License, and Version
	Contributing
	Book Repository
	Iris Data Set
	Flight Data Set

	A Brief History of Presto
	Conclusion

	Chapter 2. Installing and Configuring Presto
	Trying Presto with the Docker Container
	Installing from Archive File
	Java Virtual Machine
	Python
	Installation
	Configuration

	Adding a Data Source
	Running Presto
	Conclusion

	Chapter 3. Using Presto
	Presto Command-Line Interface
	Getting Started
	Pagination
	History
	Additional Diagnostics
	Executing Queries
	Output Formats
	Ignoring Errors

	Presto JDBC Driver
	Downloading and Registering the Driver
	Establishing a Connection to Presto

	Presto and ODBC
	Client Libraries
	Presto Web UI
	SQL with Presto
	Concepts
	First Examples

	Conclusion

	Part II. Diving Deeper into Presto
	Chapter 4. Presto Architecture
	Coordinator and Workers in a Cluster
	Coordinator
	Discovery Service
	Workers
	Connector-Based Architecture
	Catalogs, Schemas, and Tables
	Query Execution Model
	Query Planning
	Parsing and Analysis
	Initial Query Planning

	Optimization Rules
	Predicate Pushdown
	Cross Join Elimination
	TopN
	Partial Aggregations

	Implementation Rules
	Lateral Join Decorrelation
	Semi-Join (IN) Decorrelation

	Cost-Based Optimizer
	The Cost Concept
	Cost of the Join
	Table Statistics
	Filter Statistics
	Table Statistics for Partitioned Tables
	Join Enumeration
	Broadcast Versus Distributed Joins

	Working with Table Statistics
	Presto ANALYZE
	Gathering Statistics When Writing to Disk
	Hive ANALYZE
	Displaying Table Statistics

	Conclusion

	Chapter 5. Production-Ready Deployment
	Configuration Details
	Server Configuration
	Logging
	Node Configuration
	JVM Configuration
	Launcher
	Cluster Installation
	RPM Installation
	Installation Directory Structure
	Configuration
	Uninstall Presto

	Installation in the Cloud
	Cluster Sizing Considerations
	Conclusion

	Chapter 6. Connectors
	Configuration
	RDBMS Connector Example PostgreSQL
	Query Pushdown
	Parallelism and Concurrency
	Other RDBMS Connectors
	Security

	Presto TPC-H and TPC-DS Connectors
	Hive Connector for Distributed Storage Data Sources
	Apache Hadoop and Hive
	Hive Connector
	Hive-Style Table Format
	Managed and External Tables
	Partitioned Data
	Loading Data
	File Formats and Compression
	MinIO Example

	Non-Relational Data Sources
	Presto JMX Connector
	Black Hole Connector
	Memory Connector
	Other Connectors
	Conclusion

	Chapter 7. Advanced Connector Examples
	Connecting to HBase with Phoenix
	Key-Value Store Connector Example: Accumulo
	Using the Presto Accumulo Connector
	Predicate Pushdown in Accumulo

	Apache Cassandra Connector
	Streaming System Connector Example: Kafka
	Document Store Connector Example: Elasticsearch
	Overview
	Configuration and Usage
	Query Processing
	Full-Text Search
	Summary

	Query Federation in Presto
	Extract, Transform, Load and Federated Queries
	Conclusion

	Chapter 8. Using SQL in Presto
	Presto Statements
	Presto System Tables
	Catalogs
	Schemas
	Information Schema
	Tables
	Table and Column Properties
	Copying an Existing Table
	Creating a New Table from Query Results
	Modifying a Table
	Deleting a Table
	Table Limitations from Connectors

	Views
	Session Information and Configuration
	Data Types
	Collection Data Types
	Temporal Data Types
	Type Casting

	SELECT Statement Basics
	WHERE Clause
	GROUP BY and HAVING Clauses
	ORDER BY and LIMIT Clauses
	JOIN Statements
	UNION, INTERSECT, and EXCEPT Clauses
	Grouping Operations
	WITH Clause
	Subqueries
	Scalar Subquery
	EXISTS Subquery
	Quantified Subquery

	Deleting Data from a Table
	Conclusion

	Chapter 9. Advanced SQL
	Functions and Operators Introduction
	Scalar Functions and Operators
	Boolean Operators
	Logical Operators
	Range Selection with the BETWEEN Statement
	Value Detection with IS (NOT) NULL
	Mathematical Functions and Operators
	Trigonometric Functions
	Constant and Random Functions
	String Functions and Operators
	Strings and Maps
	Unicode
	Regular Expressions
	Unnesting Complex Data Types
	JSON Functions
	Date and Time Functions and Operators
	Histograms
	Aggregate Functions
	Map Aggregate Functions
	Approximate Aggregate Functions

	Window Functions
	Lambda Expressions
	Geospatial Functions
	Prepared Statements
	Conclusion

	Part III. Presto in Real-World Uses
	Chapter 10. Security
	Authentication
	Password and LDAP Authentication

	Authorization
	System Access Control
	Connector Access Control

	Encryption
	Encrypting Presto Client-to-Coordinator Communication
	Creating Java Keystores and Java Truststores
	Encrypting Communication Within the Presto Cluster

	Certificate Authority Versus Self-Signed Certificates
	Certificate Authentication
	Kerberos
	Prerequisites
	Kerberos Client Authentication
	Cluster Internal Kerberos

	Data Source Access and Configuration for Security
	Kerberos Authentication with the Hive Connector
	Hive Metastore Thrift Service Authentication
	HDFS Authentication

	Cluster Separation
	Conclusion

	Chapter 11. Integrating Presto with Other Tools
	Queries, Visualizations, and More with Apache Superset
	Performance Improvements with RubiX
	Workflows with Apache Airflow
	Embedded Presto Example: Amazon Athena
	Starburst Enterprise Presto
	Other Integration Examples
	Custom Integrations
	Conclusion

	Chapter 12. Presto in Production
	Monitoring with the Presto Web UI
	Cluster-Level Details
	Query List
	Query Details View

	Tuning Presto SQL Queries
	Memory Management
	Task Concurrency
	Worker Scheduling
	Scheduling Splits per Task and per Node
	Local Scheduling

	Network Data Exchange
	Concurrency
	Buffer Sizes

	Tuning Java Virtual Machine
	Resource Groups
	Resource Group Definition
	Scheduling Policy
	Selector Rules Definition

	Conclusion

	Chapter 13. Real-World Examples
	Deployment and Runtime Platforms
	Cluster Sizing
	Hadoop/Hive Migration Use Case
	Other Data Sources
	Users and Traffic
	Conclusion

	Chapter 14. Conclusion

	Index
	About the Authors
	Colophon

