
 Knative
Cookbook
Building Effective Serverless Applications
with Kubernetes and OpenShift

Burr Sutter &
Kamesh Sampath

Compliments of

Burr Sutter and Kamesh Sampath

Knative Cookbook
Building Effective Serverless Applications

with Kubernetes and OpenShift

978-1-492-06121-2

[LSI]

Knative Cookbook
by Burr Sutter and Kamesh Sampath

Copyright © 2020 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Jeff Bleiel
Production Editor: Christopher Faucher
Copyeditor: Kim Cofer
Proofreader: Tom Sullivan

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2020: First Edition

Revision History for the First Edition
2020-04-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492061199 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Knative Cookbook, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Red Hat, Inc. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492061199
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Red Hat. i

Preface. vii

1. Getting Started with Knative. 1
1.1 Installing the Required Tools 1
1.2 Setting Up a Kubernetes Cluster 4
1.3 Installing the Internal Kubernetes Container Registry 5
1.4 Configuring Container Registry Aliases 6
1.5 Installing Istio 8
1.6 Installing Knative 10
1.7 Verifying the Container Environment 12
Creating Kubernetes Namespaces for This Book’s Recipes 13
Querying Kubernetes Resources 14

2. Understanding Knative Serving. 17
Knative Serving Deployment Model 17
2.1 Deploying a Knative Service 19
2.2 Updating a Knative Service Configuration 23
2.3 Distributing Traffic Between Knative Service Revisions 26
2.4 Applying the Blue-Green Deployment Pattern 27
2.5 Applying the Canary Release Pattern 29

3. Autoscaling Knative Services. 33
3.1 Configuring Knative Service for Autoscaling 34
3.2 Observing Scale-to-Zero 35

iii

3.3 Configuring Your Knative Service to Handle Request Spikes 37
3.4 Cold Start Latency 39

4. Knative Eventing. 43
Usage Patterns 43
4.1 Producing Events with Eventing Sources 45
4.2 Receiving Events with Knative Eventing Sinks 46
4.3 Deploying a Knative Eventing Service 47
4.4 Connecting a Source to the Service 49
4.5 Deploying an Apache Kafka Cluster 50
4.6 Sourcing Apache Kafka Events with Knative Eventing 53
4.7 Autoscaling with Apache Kafka and Knative Eventing 56
4.8 Using a Kafka Channel as the Default Knative Channel 58
4.9 Using Knative Channels and Subscriptions 59
4.10 Using Knative Eventing Brokers and Triggers 63

5. Observability. 69
5.1 Deploying Prometheus and Grafana 69
5.2 Enable Prometheus for Metrics Collection 72
5.3 Installing Jaeger 72
5.4 Deploying Observable Test Services 74
5.5 Customizing the kubectl Output Columns 75
5.6 Restricting Knative Service Visibility 76
Grafana Dashboards 77
5.7 Monitoring Autoscaling Metrics of a Knative Service 79
5.8 Monitoring HTTP Performance Metrics of a Knative Service 85
5.9 Tracing Knative Services with Jaeger 88

6. Serverless Integration Patterns Using Apache Camel-K. 93
6.1 Installing Camel-K 94
6.2 Configuring Camel-K to Build Faster 95
6.3 Writing a Camel-K Integration 96
6.4 Running Camel-K Integrations as Knative Serverless Services 100
6.5 Using Knative Eventing with Camel-K 103
6.6 Logging and Displaying CloudEvents Messages 104
6.7 Wiring a CamelSource to a Knative Eventing Sink 104
6.8 Applying Enterprise Integration Patterns with Camel-K 107
6.9 Deploying a Data Producer 109
6.10 Deploying a Data Processor 111
6.11 Deploying an Event Subscriber 113
6.12 Filtering Data with Knative Eventing 114

iv | Table of Contents

7. Knative on OpenShift. 117
7.1 Installing Knative Serving 118
7.2 Deploying a Knative Service 131
7.3 Verifying and Invoking a Knative Service 135

Index. 139

Table of Contents | v

Preface

Serverless architecture has recently taken center stage in cloud native application
deployment. Enterprises started to see the benefits that serverless applications bring
to them, such as agility, rapid deployment, and resource cost optimization. As with
any other new technology, there were multiple ways to approach and/or employ serv‐
erless technologies, such as Function as a Service (FaaS) and Backend as a Service
(BaaS)—that is, running your applications as ephemeral containers—with the ability
to scale up and down.

Knative was started with the simple goal of having a Kubernetes-native platform to
build, deploy, and manage your serverless workloads. Kubernetes solves a lot of cloud
native application problems, but with a fair bit of complexity, especially from the per‐
spective of deployment. To make a simple service deployment with Kubernetes, a
developer has to write a minimum of two YAMLs, such as a Deployment service, and
then perform the necessary plumbing work to expose the service to the outside
world. The complexity makes an application developer spend more time crafting the
YAMLs and other core platform tasks rather than focusing on the business need.

Knative tries to solve these Kubernetes problems by providing all essential middle‐
ware primitives via a simpler deployment model. On Knative you can deploy any
modern application workload, such as monolithic applications, microservices, or
even tiny functions. Knative can run in any cloud platform that runs Kubernetes,
which gives enterprises more agility and flexibility in running their serverless work‐
loads without relying on cloud vendor–specific features.

vii

https://knative.dev
https://yaml.org

Why We Wrote This Book
The fact there are “many” ways to do serverless has resulted in confusion among
developers, with following questions being raised immediately:

1. What implementation should I choose: FaaS or BaaS?
2. What is the quickest way to get started?
3. What are the use cases for which I can apply serverless technology?
4. How do I measure the benefits?
5. What tools I should use to develop the serverless applications?

We had the same set of questions when we started to explore serverless technology.
The problems and challenges that we faced during our research became the crux of
this cookbook. This book serves as a practical guide in how to solve those challenges,
with detailed examples.

It is called a “cookbook” because the examples are structured as “recipes,” each with a
Problem, Solution, and a Discussion with possible detailed explanations. As it is
impossible to cover all possible serverless methods listed earlier, we decided to choose
BaaS. Knative is a Kubernetes-based platform that helps to run your serverless work‐
load in the BaaS way.

Who Should Read This Book
This book is for for architects and developers who have a solid understanding of
Kubernetes core concepts and who wish to enhance their knowledge in building real-
world applications with Knative.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

viii | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
You can download this book’s source code from our GitHub Repo as a ZIP file or
clone the repository locally using git, as shown here:

$ git clone -b knative-cookbook
https://github.com/redhat-developer-demos/knative-tutorial

$BOOK_HOME is a variable that refers to the source code directory on your machine
where you downloaded the recipe code examples.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

Preface | ix

https://github.com/redhat-developer-demos/knative-tutorial/tree/knative-cookbook
https://github.com/redhat-developer-demos/knative-tutorial
mailto:bookquestions@oreilly.com

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Knative Cookbook by
Burr Sutter and Kamesh Sampath (O’Reilly). Copyright 2020 O’Reilly Media Inc.,
978-1-492-06119-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Staying Up to Date
Though we try to stay with latest version of Knative for this book, Knative is evolving
at a rapid rate. To keep up with the latest developments, we suggest that you keep an
eye on the upstream community project page as well as Red Hat’s evolving Knative
Tutorial.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, please visit http://
oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/knative-cookbook.

x | Preface

mailto:permissions@oreilly.com
http://knative.dev
https://redhat-developer-demos.github.io/knative-tutorial
https://redhat-developer-demos.github.io/knative-tutorial
http://oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/knative-cookbook

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, and news, see our website at http://
www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Reviewers
Many thanks to our reviewers! They all provided valuable feedback, suggestions, and
in some cases alternate solutions; pointed out issues we had overlooked; and in gen‐
eral greatly improved the book. Any errors or omissions in this text are ours and not
theirs. An excellent example of their wisdom is the correct observation, “That sen‐
tence doesn’t know whether it’s coming or going!”

First Edition: Roland Huss, Matthias Wessendorf, Nicola Ferraro, and Vincent
Demeester. Special note of thanks to Ben Browning, Markus Thömmes, and William
Markito from the Red Hat Engineering team.

O’Reilly
Thanks to the entire team at O’Reilly, without whom this book would not exist for
many reasons, and if it did the content wouldn’t be or look nearly as good!

First Edition: our editors Jeff Bleiel and Sarah Grey.

From the Authors

Burr Sutter
My thanks go first and foremost to Kamesh Sampath—who performed the lion’s
share of the work required to create this book—for his expansive technical knowledge
and insight, and his relentless diligence and determination in researching, debugging,
using, and documenting new technologies like Knative so they become more accessi‐
ble to the developer community at large.

I am also grateful to the unimaginably diverse global developer community I engage
with every day, many of whom have made profound sacrifices to access knowledge
and opportunity. There is no question that these are—and will continue to be—the
true digital heroes, influencers, change agents, kingmakers, and re-definers of our

Preface | xi

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

future. Their efforts remind me that greatness and future impact will be determined
not only by talent, but also by an unflinching determination and hunger to learn and
imagine and create and master. The opportunity I have as a developer advocate to
contribute to these shapers of the future is one of my greatest privileges.

Kamesh Sampath
Thanks to my mentor, manager, and coauthor Burr Sutter for working on this
project. His experience and guidance not only helped getting this book into shape,
but also allowed me to learn from many different perspectives.

Thanks to Red Hat and Red Hat Developers for giving me this opportunity to author
my very first book.

Thanks to my wife who has been a great support to me and without whom I would
not have written this book. I should take this moment to thank my son, who does not
understand what I am writing but his curious questions like, “Dad, where are you
with your book?” or “How is the book coming up?” kept fueling my energy to go that
extra mile :).

Thanks all my Gods and Gurus; without their blessings nothing would have been
possible.

Last but not least, I wish to extend my gratitude and thanks to all developers who
read this book. Without you, the “Developer Community,” we would have never
thought to write this book.

xii | Preface

CHAPTER 1

Getting Started with Knative

Deploying applications as serverless services is becoming a popular architectural
style. It seems like many organizations assume that Function as a Service (FaaS) is
serverless. We think it is more accurate to say that FaaS is one way to do serverless,
but not the only way. This raises a super critical question for enterprises that may
have applications which could be a monolith or a microservice: What is the easiest
path to serverless application deployment?

The answer is a platform that can run serverless workloads, while enabling you to
have complete control over how to configure, build, deploy, and run applications—
ideally, a platform that would support deploying the applications as Linux containers.
In this chapter we introduce you to one such platform—Knative—that helps you to
run the serverless workloads in a Kubernetes-native way.

A Kubernetes cluster does not come with Knative and its dependencies pre-installed,
so the recipes in this chapter detail how to have Knative and its dependencies
installed into a Kubernetes cluster. The recipes also help in setting up your local
developer environment that will be required to run the exercises in this book.

1.1 Installing the Required Tools
Problem
You want to equip your local developer environment with the tools you will need to
build, deploy, and run Kubernetes-based applications.

Solution
In general, you will need several of the open source tools listed in Table 1-1.

1

Table 1-1. CLI tools
Tool macOS Fedora Windows

git Download Download Download

docker Docker for Mac dnf install docker Docker for Windows

kubectl Download Download Download

helm Install Install Install

stern brew install stern Download Download

yq v2.4.1 Download Download Download

httpie brew install httpie dnf install httpie Install

hey Download Download Download

watch brew install watch dnf install procps-ng

kubectx and kubens brew install kubectx Install

Make sure you add all the tools to your $PATH before you proceed
with any of the recipes in upcoming chapters.

Discussion
The following is a list of the tools you’ll need with minimum and recommended
versions:

The versions listed here were the ones tested at the time this book
was written. Later versions should maintain backward compatibil‐
ity with the use cases used in this cookbook’s recipes.

git
A distributed version-control system for tracking changes in source code during
software development:

$ git version
git version 2.21.0

docker
A client to run the Linux containers:

$ docker --version
Docker version 19.03.5, build 633a0ea

2 | Chapter 1: Getting Started with Knative

https://oreil.ly/wHGBs
https://oreil.ly/TV0qp
https://oreil.ly/miQPZ
https://oreil.ly/ryFI0
https://oreil.ly/cctEu
https://oreil.ly/RLPVR
https://oreil.ly/TMzlC
https://oreil.ly/BUM6G
https://oreil.ly/8E7zA
https://helm.sh
https://helm.sh/docs/intro/install
https://helm.sh/docs/intro/install
https://helm.sh/docs/intro/install
https://oreil.ly/XjESP
https://oreil.ly/-nTTz
https://oreil.ly/ALPob
https://oreil.ly/i4Q15
https://oreil.ly/hMUqW
https://oreil.ly/K4nue
https://oreil.ly/7-YcH
https://httpie.org
https://httpie.org/doc#windows-etc
https://github.com/rakyll/hey
https://oreil.ly/e8pJc
https://oreil.ly/f1OHE
https://oreil.ly/j1T-h
https://oreil.ly/38Vf_

kubectl
Knative minimum requires Kubernetes v1.15+; however, we recommend using
v1.15.0. To check your kubectl version run:

$ kubectl version --short
Client Version: v1.15.0
Server Version: v1.15.0

helm
Helps you define, install, and upgrade even the most complex Kubernetes appli‐
cations:

$ helm version
version.BuildInfo{Version:"v3.0.2"...}

stern
Allows you to tail multiple pods on Kubernetes and multiple containers within
the pod:

$ stern --version
stern version 1.11.0

yq
A lightweight and portable command-line YAML processor:

$ yq --version
yq version 2.4.1

httpie
A command-line HTTP client that will make you smile:

$ http --version
1.0.3

hey
A tiny program that sends some load to a web application.

hey does not have a version option, so you can use hey --help to verify that it is
in your $PATH.

watch
Execute a program periodically, showing output in full screen:

$ watch --version
watch from procps-ng 3.3.15

kubectx
Allows you to switch faster between clusters and namespaces.

kubectx does not have a version option, so you can use kubectx --help to verify
that it is in your $PATH.

1.1 Installing the Required Tools | 3

kubens is installed with kubectx, so you can use kubens --help to verify that it is
in your $PATH.

1.2 Setting Up a Kubernetes Cluster
Problem
You want to set up a Kubernetes cluster in your local development environment.

Solution
You can use minikube as your Kubernetes cluster for a local development environ‐
ment. Minikube provides a single-node Kubernetes cluster that is best suited for local
development. Download minikube and add it to your $PATH.

All the recipes in this book have been tested with minikube v1.7.2 and the Kubernetes
CLI (kubectl) v1.15.0.

The script $BOOK_HOME/bin/start-minikube.sh helps you start minikube with the right
configuration.

Discussion
You will also need to know the following list of environment variables and their
default values:

PROFILE_NAME
The name of minikube profile; default is knativecookbook

MEMORY
The memory that will be allocated to the minikube virtual machine (VM); default
is 8GB

CPUS
The number of CPUs that will be allocated to the minikube VM; default is 4

VM_DRIVER
The virtual machine driver that will be used:

• For macOS use virtualbox
• For Linux use kmv2
• For Windows use hyper-v

VM_DRIVER is a required environment variable and the start-minikube.sh script will fail
to start if it is not set:

4 | Chapter 1: Getting Started with Knative

https://oreil.ly/euHI1

$ $BOOK_HOME/bin/start-minikube.sh

 profile "knativecookbook" not found

 Created a new profile : knativecookbook

 minikube profile was successfully set to knativecookbook

 [knativecookbook] minikube v1.6.2 on Darwin 10.15.2

 Selecting virtualbox driver from user configuration (alternates: [hyperkit])

 Creating virtualbox VM (CPUs=4, Memory=8192MB, Disk=50000MB) ...

 Preparing Kubernetes v1.15.0 on Docker 19.03.5 ...
 ▪ apiserver.enable-admission-plugins=LimitRanger,NamespaceExists,
 NamespaceLifecycle,ResourceQuota,ServiceAccount,DefaultStorageClass,
 MutatingAdmissionWebhook

 Pulling images ...

 Launching Kubernetes ...

 Waiting for cluster to come online ...

 Done! kubectl is now configured to use "knativecookbook"

1.3 Installing the Internal Kubernetes Container Registry
Problem
You need to push and pull container images into and from a container registry. To do
that you will need to install the internal container registry first.

Solution
To set up an internal container registry inside of minikube, run:

$ minikube addons enable registry

It will take a few minutes for the registry to be enabled; you can watch the status of
the pods on the kube-system namespace.

Discussion
If the registry enablement is successful, you will see two new pods in the kube-system
namespace with a status of Running:

$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
registry-7c5hg 1/1 Running 0 29m
registry-proxy-cj6dj 1/1 Running 0 29m
...

1.3 Installing the Internal Kubernetes Container Registry | 5

1.4 Configuring Container Registry Aliases
Problem
You want to use custom domain names to push and pull container images into an
internal container registry.

Solution
As part of some recipes in this cookbook, you will need interact with the local inter‐
nal registry. To make push and pull smoother, we have provided a helper script that
enables you to use some common names like dev.local and example.com as registry
aliases for the internal registry. Navigate to the registry helper folder and run:

$ cd $BOOK_HOME/apps/minikube-registry-helper

A daemonset is used to run the same copy of the pod in all the nodes of the Kuber‐
netes cluster. Run the following command to deploy the registry helper daemonset
and ConfigMap that will be used by the registry helper:

$ kubectl apply -n kube-system -f registry-aliases-config.yaml
$ kubectl apply -n kube-system -f node-etc-hosts-update.yaml

Wait for the daemonset to be running before proceeding to the
next step. You can monitor the status of the daemonset with watch
kubectl get pods -n kube-system. You can use Ctrl-C to termi‐
nate the watch.

Verify that the entries are added to your minikube node’s /etc/hosts file:

watch minikube ssh -- sudo cat /etc/hosts

A successful daemonset execution will update the minikube node’s /etc/hosts file with
the following entries:

127.0.0.1 localhost
127.0.1.1 demo
10.111.151.121 dev.local
10.111.151.121 example.com

The IP for dev.local and example.com will match the CLUSTER-IP
of the internal container registry. To verify this, run:

$ kubectl get svc registry -n kube-system
NAME TYPE CLUSTER-IP PORT(S) AGE
registry ClusterIP 10.111.151.121 80/TCP 178m

6 | Chapter 1: Getting Started with Knative

https://oreil.ly/N-QS8
https://oreil.ly/mTp6X

As part of the last step of configuring the internal container registry, you also need to
patch the CoreDNS so that the deployments resolve container images that have
names that begin with dev.local and example.com (e.g., dev.local/rhdevelopers/
foo:v1.0.0):

$./patch-coredns.sh

To verify that the patch was successfully executed, run the following command to get
the contents of the coredns ConfigMap in the kube-system namespace:

$ kubectl get cm -n kube-system coredns -o yaml

A successfully patched coredns ConfigMap will have the following content:

apiVersion: v1
data:
 Corefile: |-
 .:53 {
 errors
 health

 rewrite name dev.local registry.kube-system.svc.cluster.local
 rewrite name example.com registry.kube-system.svc.cluster.local
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 proxy . /etc/resolv.conf
 cache 30
 loop
 reload
 loadbalance
 }
kind: ConfigMap
metadata:
 name: coredns

The rewrite rule will resolve dev.local to the internal registry address
registry.kube-system.svc.cluster.local.

Discussion
You may need to update the custom domain names for the internal container registry.
In order update it, you need to edit the ConfigMap registry-aliases-config.yaml and
add the extra domain names as per your needs. Each domain name should be on a
new line of its own. For example, the following snippet shows how to add a new
domain called test.org to the registry helper ConfigMap:

apiVersion: v1
data:

1.4 Configuring Container Registry Aliases | 7

 # Add additional hosts separated by new-line
 registryAliases: >-
 dev.local
 example.com
 test.org
 # default registry address in minikube when enabled
 # via minikube addons enable registry
 registrySvc: registry.kube-system.svc.cluster.local
kind: ConfigMap
metadata:
 name: registry-aliases
 namespace: kube-system

After you update the ConfigMap, you need to restart the daemonset by deleting the
daemonset pod in the kube-system namespace. When the daemonset restarts, it will
pick up new aliases from the registry helper ConfigMap and configure the same to be
used as domain aliases. After a successful restart of the daemonset, you need to rerun
the script patch-coredns.sh to patch the CoreDNS.

1.5 Installing Istio
Problem
You need to install an ingress gateway in order to interact with Knative Services.

Solution
Knative Serving requires an ingress gateway to route requests to the Knative Serving
Services. Currently it supports the following ingress gateways that are based on
Envoy:

• Ambassador
• Contour
• Gloo
• Istio

In this recipe we will use Istio. Since the ingress gateway is the only Istio component
required for Knative, you can set up a minimal Istio (istio lean) installation with the
following script:

$ $BOOK_HOME/bin/install-istio.sh

Discussion
Installing Istio components will take some time, so we highly recommend that you
start the Knative components installation only after you have verified that the Istio

8 | Chapter 1: Getting Started with Knative

https://www.getambassador.io
https://projectcontour.io
https://docs.solo.io/gloo/latest
https://istio.io

component pods are running. The install script will terminate automatically after all
the needed Istio components and Custom Resource Definitions (CRDs) have been
installed and running.

All Istio resources will be under one of the following application programming inter‐
face (API) groups:

• authentication.istio.io
• config.istio.io
• networking.istio.io
• rbac.istio.io

You can verify that the needed CRDs are available by querying api-resources for
each API group:

$ kubectl api-resources --api-group=networking.istio.io
NAME APIGROUP NAMESPACED KIND
destinationrules networking.istio.io true DestinationRule
envoyfilters networking.istio.io true EnvoyFilter
gateways networking.istio.io true Gateway
serviceentries networking.istio.io true ServiceEntry
sidecars networking.istio.io true Sidecar
virtualservices networking.istio.io true VirtualService

$ kubectl api-resources --api-group=config.istio.io
NAME APIGROUP NAMESPACED KIND
adapters config.istio.io true adapter
attributemanifests config.istio.io true attributemanifest
handlers config.istio.io true handler
httpapispecbindings config.istio.io true HTTPAPISpecBinding
httpapispecs config.istio.io true HTTPAPISpec
instances config.istio.io true instance
quotaspecbindings config.istio.io true QuotaSpecBinding
quotaspecs config.istio.io true QuotaSpec
rules config.istio.io true rule
templates config.istio.io true template

$ kubectl api-resources --api-group=authentication.istio.io
NAME APIGROUP NAMESPACED KIND
meshpolicies authentication.istio.io false MeshPolicy
policies authentication.istio.io true Policy

$ kubectl api-resources --api-group=rbac.istio.io
NAME APIGROUP NAMESPACED KIND
authorizationpolicies rbac.istio.io true AuthorizationPolicy
clusterrbacconfigs rbac.istio.io false ClusterRbacConfig
rbacconfigs rbac.istio.io true RbacConfig
servicerolebindings rbac.istio.io true ServiceRoleBinding
serviceroles rbac.istio.io true ServiceRole

1.5 Installing Istio | 9

1.6 Installing Knative
Knative has two building blocks:

Knative Serving
Serving is for running your services inside Kubernetes by providing a simplified
deployment syntax, with automated scale-to-zero and scale-out based on HTTP
load.

Knative Eventing
Eventing is used to connect your Knative Serving Services to event streams
beyond HTTP (e.g., an Apache Kafka topic).

The Knative installation process is divided into three steps:

1. Installing Knative Custom Resource Definitions (CRDs)
2. Installing the Knative Serving components
3. Installing the Knative Eventing components

This recipe shows how to install these components in the order listed here.

Problem
You need to install Knative CRDs, Knative Serving, and Knative Eventing
components.

Solution
Knative Serving and Eventing define their own Kubernetes CRDs. You need to have
the Knative Serving and Eventing CRDs installed in your Kubernetes cluster. Run the
following command to do so:

$ kubectl apply --selector knative.dev/crd-install=true \
 --filename "https://github.com/knative/serving/releases/\
download/v0.12.0/serving.yaml" \
 --filename "https://github.com/knative/eventing/releases/\
download/v0.12.0/eventing.yaml"

Discussion
Now that you have installed the Knative Serving and Eventing CRDs, you can verify
the CRDs by querying the api-resources, as described next.

All Knative Serving resources will be under the API group called serving.
knative.dev:

$ kubectl api-resources --api-group=serving.knative.dev
NAME SHORTNAMES APIGROUP NAMESPACED KIND

10 | Chapter 1: Getting Started with Knative

https://oreil.ly/jsO1V

configurations config,cfg serving.knative.dev true Configuration
revisions rev serving.knative.dev true Revision
routes rt serving.knative.dev true Route
services kservice,ksvc serving.knative.dev true Service

All Knative Eventing resources will be under one of the following API groups:

• messaging.knative.dev

• eventing.knative.dev

• sources.eventing.knative.dev

• sources.knative.dev

$ kubectl api-resources --api-group=messaging.knative.dev
NAME SHORTNAMES APIGROUP NAMESPACED KIND
channels ch messaging.knative.dev true Channel
inmemorychannels imc messaging.knative.dev true InMemoryChannel
parallels messaging.knative.dev true Parallel
sequences messaging.knative.dev true Sequence
subscriptions sub messaging.knative.dev true Subscription

$ kubectl api-resources --api-group=eventing.knative.dev
NAME SHORTNAMES APIGROUP NAMESPACED KIND
brokers eventing.knative.dev true Broker
eventtypes eventing.knative.dev true EventType
triggers eventing.knative.dev true Trigger

$ kubectl api-resources --api-group=sources.eventing.knative.dev
NAME APIGROUP NAMESPACED KIND
apiserversources sources.eventing.knative.dev true ApiServerSource
containersources sources.eventing.knative.dev true ContainerSource
cronjobsources sources.eventing.knative.dev true CronJobSource
sinkbindings sources.eventing.knative.dev true SinkBinding

$ kubectl api-resources --api-group=sources.knative.dev
NAME APIGROUP NAMESPACED KIND
apiserversources sources.knative.dev true ApiServerSource
sinkbindings sources.knative.dev true SinkBinding

Knative has two main infrastructure components: controller and webhook. These
help in translating the Knative CRDs, which are usually written in YAML files, into
Kubernetes objects like Deployment and Service. Apart from the controller and web‐
hook, Knative Serving and Eventing also install their respective functional compo‐
nents, which are listed in the upcoming sections.

Run the following command to deploy the Knative Serving infrastructure
components:

$ kubectl apply \
 --selector \
 networking.knative.dev/certificate-provider!=cert-manager \

1.6 Installing Knative | 11

https://oreil.ly/OId3l
https://oreil.ly/Cca0r

 --filename \
 https://github.com/knative/serving/releases/download/v0.12.0/serving.yaml

This process will take a few minutes for the Knative Serving pods to be up and run‐
ning. You can monitor the status of the Knative Serving installation by watching the
pods in the knative-serving namespace using the command:

$ watch kubectl get pods -n knative-serving
NAME READY STATUS RESTARTS AGE
activator-5dd6dc95bc-k9lg9 1/1 Running 0 86s
autoscaler-b56799cdf-55h5k 1/1 Running 0 86s
autoscaler-hpa-6f5c5cf986-b8lvg 1/1 Running 0 86s
controller-f8b98d964-qjxff 1/1 Running 0 85s
networking-istio-bb44d8c87-s2lbg 1/1 Running 0 85s
webhook-78dcbf4d94-dczd6 1/1 Running 0 85s

Run the following command to install Knative Eventing infrastructure components:

$ kubectl apply \
 --selector \
 networking.knative.dev/certificate-provider!=cert-manager \
 --filename \
 https://github.com/knative/eventing/releases/download/v0.12.0/eventing.yaml

Like the Knative Serving deployment, the Knative Eventing deployment will also take
a few minutes to complete. You can watch the knative-eventing namespace pods for
live status using the command:

$ watch kubectl get pods -n knative-eventing
NAME READY STATUS RESTARTS AGE
eventing-controller-77b4f76d56-d4fzf 1/1 Running 0 2m39s
eventing-webhook-f5d57b487-hbgps 1/1 Running 0 2m39s
imc-controller-65bb5ddf-kld5l 1/1 Running 0 2m39s
imc-dispatcher-dd84879d7-qt2qn 1/1 Running 0 2m39s
in-memory-channel-controller-6f74d5c8c8-vm44b 1/1 Running 0 2m39s
in-memory-channel-dispatcher-8db675949-mqmfk 1/1 Running 0 2m39s
sources-controller-79c4bf8b86-lxbjf 1/1 Running 0 2m39s

1.7 Verifying the Container Environment
Problem
You want to know that you have set the right minikube profile and are executing the
commands in the right Docker context.

Solution
Minikube provides the profile and docker-env commands that are used to set the
profile and configure your docker environment to use minikube. Run the following
command to set your profile and docker environment for this book:

12 | Chapter 1: Getting Started with Knative

https://github.com/knative/serving/releases/download/v0.12.0/serving.yaml
https://github.com/knative/eventing/releases/download/v0.12.0/eventing.yaml

$ minikube profile knativecookbook
$ eval $(minikube docker-env)

Discussion
Now when you execute the command, docker images will list the images found
inside of minikube’s internal docker daemon (output shortened for brevity):

$ docker images --format {{.Repository}}
gcr.io/knative-releases/knative.dev/serving/cmd/activator
gcr.io/knative-releases/knative.dev/serving/cmd/webhook
gcr.io/knative-releases/knative.dev/serving/cmd/controller
gcr.io/knative-releases/knative.dev/serving/cmd/autoscaler-hpa
gcr.io/knative-releases/knative.dev/serving/cmd/networking/istio
k8s.gcr.io/kube-addon-manager
istio/proxyv2
istio/pilot

Creating Kubernetes Namespaces for This Book’s Recipes
The recipes in each chapter will be deployed in the namespace dedicated for the chap‐
ter. Each chapter will instruct you to switch to the respective namespace. Run the fol‐
lowing command to create all the required namespaces for this book:

$ kubectl create namespace chapter-2
$ kubectl create namespace chapter-3
$ kubectl create namespace chapter-4
$ kubectl create namespace chapter-5
$ kubectl create namespace chapter-6
$ kubectl create namespace chapter-7

Why Switch Namespaces?
Kubernetes by default creates the default namespace. You can control the namespace
of the resource by specifying the --namespace or -n option to all your Kubernetes
commands. By switching to the right namespace, you can be assured that your
Kubernetes resources are created in the correct place as needed by the recipes.

You can use kubectl to switch to the required namespace. The following command
shows how to use kubectl to switch to a namespace called chapter-1:

$ kubectl config set-context --current --namespace=chapter-1

Or you can use the kubens utility to set your current namespace to be chapter-1:

$ kubens chapter-1

Creating Kubernetes Namespaces for This Book’s Recipes | 13

Setting your current namespace with kubens means you can avoid
the option --namespace or its short name -n for all subsequent
kubectl commands.
However, it is recommended that you continue to use --namespace
or -n as part of your kubectl commands; using the namespace
option ensures that you are creating Kubernetes resources in the
correct namespace.

Ensure that you are also in the right working directory in your terminal by running
the command:

$ cd $BOOK_HOME

Querying Kubernetes Resources
As part of the recipes, and many other places in the book, you will be instructed to
watch Kubernetes resources.

You might be familiar with using the command kubectl get <resource> -w. You
are free to use the kubectl command with the w option, but in this book we prefer to
use the watch command. The watch command provides a simple and clean output
that can help you to grok the output better. Let me explain the two variants with an
example.

Let’s assume you want to query running pods in a namespace called istio-system:

$ *kubectl -n istio-system get pods -w *
NAME READY STATUS RESTARTS AGE
cluster-local-gateway-7588cdfbc7-8f5s8 0/1 ContainerCreating 0 3s
istio-ingressgateway-5c87b8d6c7-dzwx8 0/1 ContainerCreating 0 4s
istio-pilot-7c555cf995-j9tpv 0/1 ContainerCreating 0 4s
NAME READY STATUS RESTARTS AGE
istio-pilot-7c555cf995-j9tpv 0/1 Running 0 16s
istio-ingressgateway-5c87b8d6c7-dzwx8 0/1 Running 0 27s
cluster-local-gateway-7588cdfbc7-8f5s8 0/1 Running 0 29s
istio-pilot-7c555cf995-j9tpv 1/1 Running 0 36s
cluster-local-gateway-7588cdfbc7-8f5s8 1/1 Running 0 37s
istio-ingressgateway-5c87b8d6c7-dzwx8 1/1 Running 0 44s

$ watch kubectl -n istio-system get pods
NAME READY STATUS RESTARTS AGE
cluster-local-gateway-7588cdfbc7-vgwgw 1/1 Running 0 8s
istio-ingressgateway-5c87b8d6c7-tbj6g 1/1 Running 0 8s
istio-pilot-7c555cf995-6ggvv 1/1 Running 0 8s

If you compare the output of these two commands, you’ll see that watch kubectl -n
istio-system get pods has simple and clean output compared to kubectl -n
istio-system get pods -w, although both command shows the same output. When

14 | Chapter 1: Getting Started with Knative

using watch, the command kubectl -n istio-system get pods is refreshed every
two seconds, which allows you to watch the changing status in a simpler way. By con‐
trast, the kubectl watch option keeps appending to the output.

In this book when you are instructed to watch some Kubernetes
resource, you should use watch <kubectl command> as explained
previously. However, the commands and options might vary from
recipe to recipe.

You now have an understanding of what Knative is, how to install Knative and its
dependencies, and how to install useful open source tools that will speed up your
Kubernetes development.

With what you have learned in this chapter, you are all set to apply your Kubernetes
knowledge to deploy serverless workloads. As part of the first step in putting your
understanding to the test, Chapter 2 helps you by teaching you a few techniques on
Knative Serving.

Querying Kubernetes Resources | 15

CHAPTER 2

Understanding Knative Serving

Knative Serving is ideal for running your application services inside Kubernetes by
providing a more simplified deployment syntax with automated scale-to-zero and
scale-out based on HTTP load. The Knative platform will manage your service’s
deployments, revisions, networking, and scaling.

Knative Serving exposes your service via an HTTP URL and has a lot of safe defaults
for its configurations. For many practical use cases you might need to tweak the
defaults to your needs and might also need to adjust the traffic distribution among
the service revisions. Because the Knative Serving Service has the built-in ability to
automatically scale down to zero when not in use, it is appropriate to call it a server‐
less service.

In this chapter, we are going to deploy a Knative Serving Service, see its use of Con‐
figuration and Revision, and practice a blue-green deployment and Canary release.

Knative Serving Deployment Model
Before you deploy your first serverless service, it is important that you understand its
deployment model and the Kubernetes resources that make up a Knative Service.

During the deployment of a Knative Serving Service (ksvc) as shown in Figure 2-1,
the Knative Serving controller creates a Configuration, a Revision, and a Route,
which deserve additional explanation:

Knative Configuration
The Knative Configuration maintains the desired state of your deployment, pro‐
viding a clean separation of code and configuration using the twelve-factor app
development principles. Based on the desired state, the Knative Configuration
controller creates a new Kubernetes Deployment for your application. Also, it’s

17

important to note that every change to a Knative Configuration will result in a
new Kubernetes Deployment.

Knative Revision
Since the Knative Configuration uses the twelve-factor app principles, every
change to the application configuration creates a new Knative Revision. The Kna‐
tive Revision is similar to a version control tag or label and it is immutable. Every
Knative Revision has a corresponding Kubernetes Deployment associated with it;
hence, it allows the application to be rolled back to any last known good
configuration.

Knative Route
The Knative Route is the the URL by which the Knative Service can be accessed
or invoked.

Figure 2-1. Knative Serving resources

ksvc is the short name for the Knative Serving Service Custom
Resource, and you can use the following command to query your
Kubernetes cluster for this information:

kubectl api-resources --api-group=serving.knative.dev

18 | Chapter 2: Understanding Knative Serving

Twelve-Factor App
12factor.net defines the twelve-factor app as a methodology for building software-as-
a-service apps that:

• Use declarative formats for setup automation, to minimize time and cost for new
developers joining the project;

• Have a clean contract with the underlying operating system, offering maximum
portability between execution environments;

• Are suitable for deployment on modern cloud platforms, obviating the need for
servers and systems administration;

• Minimize divergence between development and production, enabling continu‐
ous deployment for maximum agility;

• And can scale up without significant changes to tooling, architecture, or develop‐
ment practices.

The twelve-factor methodology can be applied to apps written in any programming
language, and which use any combination of backing services (database, queue, mem‐
ory cache, etc.).

Before You Begin
All the recipes in this chapter will be executed from the directory $BOOK_HOME/basics,
so change to the recipe directory by running:

$ cd $BOOK_HOME/basics

The recipes of this chapter will be deployed in the chapter-2 namespace, so switch to
the chapter-2 namespace with the following command:

$ kubectl config set-context --current --namespace=chapter-2

2.1 Deploying a Knative Service
Problem
You want to deploy a microservice as a serverless service on Kubernetes.

Solution
Like any other Kubernetes resource, a Knative Serving Service can be deployed using
a resource YAML file. As you will see, the resource YAML is similar to a Kubernetes
Deployment but with a few attributes removed. For the upcoming recipes we will be

2.1 Deploying a Knative Service | 19

https://12factor.net

using a prebuilt container image called quay.io/rhdevelopers/knative-tutorial-
greeter:quarkus.

Before you deploy your first Knative Service, we need to quickly describe a Knative
Service YAML:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

 name: greeter
spec:
 template:
 metadata:

 name: greeter-v1
 spec:
 containers:
 - image: quay.io/rhdevelopers/knative-tutorial-greeter:quarkus
 livenessProbe:
 httpGet:
 path: /healthz
 readinessProbe:
 httpGet:
 path: /healthz

The name of the service, in this case greeter, will become a prefix for all the gen‐
erated Kubernetes resources that are created by this Knative Serving Service
deployment.

The name of the Knative Revision. If this name is not provided, Knative will cre‐
ate the revision name.

Run the following command to deploy the greeter Knative Service:

$ kubectl -n chapter-2 apply -f service.yaml

Discussion
As in any Kubernetes resource YAML, apiVersion defines the API group of the Kna‐
tive Service. These API resources are available via the Kubernetes CRDs that you
deployed as part of the setup described in Chapter 1. The kind is a Kubernetes
Resource corresponding to the Knative Service. In order to avoid confusion with the
Kubernetes built-in service, the Knative Service is associated with its apiVersion and
kind—that is, service.serving.knative.dev.

The spec block of the resource YAML is exactly the same as the Kubernetes PodSpec,
with the following attributes removed:

20 | Chapter 2: Understanding Knative Serving

https://oreil.ly/PUc_2

• InitContainers
• RestartPolicy
• TerminationGracePeriodSeconds
• ActiveDeadlineSeconds
• DNSPolicy
• NodeSelector
• AutomountServiceAccountToken
• NodeName
• HostNetwork
• HostPID
• HostIPC
• ShareProcessNamespace
• SecurityContext
• Hostname
• Subdomain
• Affinity
• SchedulerName
• Tolerations
• HostAliases
• PriorityClassName
• Priority
• DNSConfig
• ReadinessGates
• RuntimeClassName

The block spec → template is called the Knative Service template block. The meta
data → name in the service template defines the Knative Revision name. This name is
optional and can be omitted; if it’s omitted the Knative Revision name will be
autogenerated.

The liveness probe of the Knative Service is slightly different from the standard
Kubernetes probes. It has no port defined as part of it probe definition; the Knative
Serving controller can automatically infer the port and update it during the service
deployment phase. The same rule is applicable for the readiness probe.

2.1 Deploying a Knative Service | 21

https://oreil.ly/QdDXK

The very first deployment of the service will take additional time as the container
image needs to be downloaded to your Kubernetes cluster. A successful deployment
will result in a pod with a similar (though not identical) name in the chapter-2
namespace:

$ watch kubectl get pods
NAME READY STATUS AGE
greeter-v1-deployment-5749cc98fc-gs6zr 2/2 Running 10s

The deployment of a Knative Serving Service results in a ksvc being created. You can
query for available ksvc services using the command kubectl get ksvc. In order to
invoke the service you will need its URL, which is created by the Knative Route. To
discover greeter’s Knative Route, run the following command:

$ kubectl -n chapter-2 get ksvc greeter

The preceding command will output the following (some columns omitted for
brevity):

NAME URL LATESTCREATED LATESTREADY
greeter http://greeter.knativetutorial.example.com greeter-v1 greeter-v1

The URL shown in the output is required to invoke the service. In your minikube
environment you do not normally have a load balancer configured, therefore this
URL has to be passed as a Host header by the calling client (e.g., curl). In addition, all
the calls to the Knative Service are routed via the Istio ingress gateway; therefore you
also need to know the IP address and port number of the service called istio-
ingressgateway in the istio-system namespace.

For your convenience, we have added a script named call.sh (refer to the following
listing) in the directory $BOOK_HOME/bin. It encapsulates all the logic that is needed to
call the Knative Service:

#!/bin/bash

KSVC_NAME=${1:-'greeter'}

IP_ADDRESS="$(minikube ip):$(kubectl get svc istio-ingressgateway \
 --namespace istio-system \

 --output 'jsonpath={.spec.ports[?(@.port==80)].nodePort}')"

curl -H "Host:$KSVC_NAME.chapter-2.example.com" $IP_ADDRESS

The script defaults to a ksvc named greeter, unless another name is provided as
a command-line parameter.

The minikube IP address is retrieved using the command minikube ip (e.g.,
192.168.99.100). The NodePort of the Istio ingress gateway service is also
retrieved and appended to the IP_ADDRESS (e.g. 192.168.99.100:31380).

22 | Chapter 2: Understanding Knative Serving

http://greeter.knativetutorial.example.com
https://oreil.ly/mcWN8

The curl command uses the Knative Service URL via the Host header value.

The expanded curl command from the call.sh script will look something like the
following:

curl -H "Host:greeter.chapter-2.example.com" 192.168.99.100:31380

Now, invoke the service by executing the script $BOOK_HOME/bin/call.sh:

$ $BOOK_HOME/bin/call.sh
Hi greeter => 9861675f8845 : 1

You should notice that if your ksvc pod called greeter is not inter‐
acted with (i.e., not called/invoked), it will terminate as Knative
Serving will automatically scale-to-zero any Knative Service pods
that are not being actively used. If needed, $BOOK_HOME/bin/call.sh
will wake up greeter, causing it to scale back up to an actively run‐
ning pod. You can use watch kubectl get pods to monitor the
pod lifecycle.

The deployment of the greeter service has also created a Knative Configuration. The
Knative Configuration holds the current state of the Knative Service—that is, which
revision of the service should receive the requests. Currently you should only have
one revision named greeter-v1; therefore, running the command kubectl -n

chapter-2 get configurations greeter should result in a single greeter configu‐
ration as shown here:

$ kubectl get configurations greeter
NAME LATESTCREATED LATESTREADY READY
greeter greeter-v1 greeter-v1 True

2.2 Updating a Knative Service Configuration
Problem
You need to update the configuration of your existing service but want to ensure the
changes can be rolled back if needed.

Solution
Twelve-factor app principles state that any change to application configuration is
considered a new revision. A revision is the immutable application and configuration
state that gives you the capability to roll back to any last known good state.

2.2 Updating a Knative Service Configuration | 23

Recall the Knative Service deployment model that we saw earlier in Figure 2-1. A
ksvc creates a Configuration, which creates a Revision, which creates a Deployment,
which creates a ReplicaSet, which creates the Pod that is your running service.

Any update to the application, such as a new container image, a tweaked liveness
probe, or a change to an environment variable, will cause Knative to roll out a new
revision. Every new revision rollout will create a new Kubernetes Deployment.

In this section, we will make a simple update to the application by adding an environ‐
ment variable called MESSAGE_PREFIX to the Knative Service YAML. The following
listing shows the updated Knative Service resource file with the environment variable
added in its spec section:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: greeter
spec:
 template:
 metadata:

 name: greeter-v2
 spec:
 containers:
 - image: quay.io/rhdevelopers/knative-tutorial-greeter:quarkus

 env:
 - name: MESSAGE_PREFIX
 value: Namaste
 livenessProbe:
 httpGet:
 path: /healthz
 readinessProbe:
 httpGet:
 path: /healthz

The name of the Knative Service. To differentiate between the two revisions, we
have called this one greeter-v2.

An environment variable named MESSAGE_PREFIX with a value of Namaste. This
environment variable will be used by the application when responding with the
greeting.

To roll out this newly updated configuration, deploy the file called service-env.yaml:
$ kubectl -n chapter-2 apply -f service-env.yaml

This command will result in a new Kubernetes Deployment:

$ watch kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
greeter-v1-deployment 0/0 0 0 6m48s
greeter-v2-deployment 1/1 1 1 22s

24 | Chapter 2: Understanding Knative Serving

Discussion
When you examine the Pods in the namespace chapter-2, you should only see one
pod corresponding to greeter-v2 running as shown in the following listing:

$ watch kubectl get pods
NAME READY STATUS AGE
greeter-v2-deployment-9984bb56d-gn6tm 2/2 Running 15s

Your greeter-v1 deployment had no requests for approximately 60 seconds, which is
the Knative default scale-down time window. greeter-v1 was automatically scaled
down to zero since it lacked invocations. This is the key to how Knative Serving helps
you save expensive cloud resources using serverless services. You will learn more
about this feature in Chapter 3.

Any update to the Knative Service will create a new revision. You should now have
two revisions of the Knative Service greeter. Run the following command to see the
available revisions:

$ kubectl -n chapter-2 get revisions

You should see two revisions, each one associated with greeter-v1 and greeter-v2,
respectively. The following listing shows the available revisions for the greeter
service:

NAME CONFIG NAME K8S SERVICE NAME GENERATION READY
greeter-v1 greeter greeter-v1 1 True
greeter-v2 greeter greeter-v2 2 True

This is a new revision rollout, so there will not be a new Route, ksvc, or Configura‐
tion created. You can verify the existing state of the Knative resources Route, ksvc,
and Configuration by the running the following commands:

• kubectl get routes

• kubectl get ksvc

• kubectl get configurations

When you call the service you receive a response similar to Namaste greeter ⇒
9861675f8845 : 1. Knative is now routing 100% of the end-user traffic to the new
revision greeter-v2:

$ $BOOK_HOME/bin/call.sh
Namaste greeter => 9861675f8845 : 1

How does the Knative Route know which revision to send all the traffic to?

It uses the Knative Configuration, which is responsible for holding the state of a Kna‐
tive Service—that is, how to distribute traffic between various revisions. By default, it

2.2 Updating a Knative Service Configuration | 25

routes 100% of the traffic to any newly created revision, which in this case is
greeter-v2. To verify, run:

$ kubectl get configurations greeter
NAME LATESTCREATED LATESTREADY READY
greeter greeter-v2 greeter-v2 True

2.3 Distributing Traffic Between Knative Service Revisions
Problem
In a typical microservices deployment, you may wish to deploy applications using
common deployment patterns such as Canary or blue-green. To use these deploy‐
ment patterns with Knative, you will need to have one or more revisions of the appli‐
cation to distribute the traffic.

Solution
The traffic block of the Knative Service resource YAML controls the distribution of
traffic between multiple revisions.

The traffic block of the Knative Serving YAML describes the traffic distribution
requirements. For example:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: foo
spec:
 template:
 # removed for brevity

 traffic:

 - tag: v1

 revisionName: foo-v1

 percent: 50
 - tag: v2
 revisionName: foo-v2
 percent: 50

The traffic block to specify the traffic distribution

The unique name for this traffic block list item

The Knative Revision that will participate in the traffic distribution

The amount of traffic that the revision will receive; it is a numerical value in
percentage

26 | Chapter 2: Understanding Knative Serving

https://oreil.ly/WDJeA
https://oreil.ly/sMfOU

Discussion
The traffic distribution is added using the traffic block in the Knative Service
YAML. Each traffic block can define one or more items with following attributes:

tag
An identifier for the traffic distribution. This tag will act as the prefix in the Kna‐
tive Route to send traffic to this particular revision.

revisionName
The name of the Knative Service Revision that will participate in the traffic distri‐
bution. You can get the revision names using the command kubectl get revi
sions <ksvc name>.

percent
The amount of traffic that this revision will handle. This value should not be
greater than 100. In this example, Knative will send 50% of the traffic to the revi‐
sion foo-v1 and 50% to revision foo-v2.

Knative Serving does create a unique service URL for each tag. You can query them
using:

$ kubectl -n chapter-2 get ksvc greeter -oyaml \
 | yq r - 'status.traffic[*.url']
http://greeter-v1.chapter-2.example.com
http://greeter-v2.chapter-2.example.com

Though by default, Knative Service will route the percentage of traffic as defined by
the tags of the traffic block—that is, $BOOK_HOME/call.sh greeter—but you can also
call them directly using the respective tag URLs; e.g., $BOOK_HOME/call.sh greeter-v1
or $BOOK_HOME/call.sh greeter-v2.

Now that you have seen how to distribute the traffic between Knative Revisions, we
can move on to patterns like blue-green and Canary.

2.4 Applying the Blue-Green Deployment Pattern
Problem
You need to deploy a change of your application into production rapidly using the
blue-green deployment pattern and strategy.

Solution
Knative offers a simple way of switching 100% of the traffic from one Knative Service
Revision (blue) to another newly rolled out Revision (green). If the new Revision
(e.g., green) has erroneous behavior, then it is easy to roll back the change.

2.4 Applying the Blue-Green Deployment Pattern | 27

http://greeter-v1.chapter-2.example.com
http://greeter-v2.chapter-2.example.com
https://oreil.ly/sMfOU

As part of this recipe you will apply the blue-green deployment pattern with the Kna‐
tive Service called greeter. You should have already deployed two revisions of
greeter named greeter-v1 and greeter-v2 based on the previous recipes found in
this chapter.

With the deployment of greeter-v2 you noticed that Knative automatically started to
routing 100% of the traffic to greeter-v2. Now let’s assume that we need to roll back
greeter-v2 to greeter-v1 for some critical reason.

The following Knative Service YAML is identical to the previously deployed greeter-
v2 except that we have added the traffic section to indicate that 100% of the traffic
should be routed to greeter-v1:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: greeter
spec:
 template:
 metadata:
 name: greeter-v2
 spec:
 containers:
 - image: quay.io/rhdevelopers/knative-tutorial-greeter:quarkus
 env:
 - name: MESSAGE_PREFIX
 value: Namaste
 livenessProbe:
 httpGet:
 path: /healthz
 readinessProbe:
 httpGet:
 path: /healthz
 traffic:
 - tag: v1
 revisionName: greeter-v1
 percent: 100
 - tag: v2
 revisionName: greeter-v2
 percent: 0
 - tag: latest
 latestRevision: true
 percent: 0

Discussion
If you observe the resource YAML, we have added a special tag called latest. Since
you have defined that 100% of the traffic needs to go to greeter-v1, this tag can be

28 | Chapter 2: Understanding Knative Serving

used to suppress the default behavior of the Knative Service to route 100% of the traf‐
fic to the latest revision.

Before you apply the resource $BOOK_HOME/basics/service-pinned.yaml, call the
greeter service again to verify that it is still providing the response from greeter-v2
that includes Namaste:

$ $BOOK_HOME/bin/call.sh
Namaste greeter => 9861675f8845 : 1

$ kubectl get pods
NAME READY STATUS AGE
greeter-v2-deployment-9984bb56d-gr4gp 2/2 Running 14s

Now apply the updated Knative Service configuration using the command as shown
in the following snippet:

kubectl -n chapter-2 apply -f service-pinned.yaml

You will notice that the command does not create any new Configuration/Revision/
Deployment as there was no application update (e.g., image tag, environment vari‐
able, etc.), but when you call the service, Knative scales up the greeter-v1 and the
service responds with the text Hi greeter ⇒ 9861675f8845 : 1.

$ $BOOK_HOME/bin/call.sh
Hi greeter => 9861675f8845 : 1

$ kubectl get pods
NAME READY STATUS AGE
greeter-v1-deployment-6f75dfd9d8-s5bvr 2/2 Running 5s

As an exercise, flip all the traffic back to greeter-v2 (green). You
need to edit the traffic block of the service-pinned.yaml and
update the revision name to greeter-v2. After you redeploy the
service-pinned.yaml, try calling the service again to notice the dif‐
ference. If everything went smoothly you will notice the service
calls will now go to only greeter-v2.

2.5 Applying the Canary Release Pattern
Problem
You need to deploy a change of your application into production rapidly, but you
want only a fraction of the end-user traffic to flow to the changed version. This is
known as a Canary release.

2.5 Applying the Canary Release Pattern | 29

https://oreil.ly/WDJeA

Solution
A Canary release is more effective when you want to reduce the risk of introducing
new features. It provides you with a better feature-feedback loop before rolling out
the change to your entire user base.

Knative allows you to split the traffic between revisions in increments as small as 1%.

To see this in action, apply the following Knative Service definition that will split the
traffic 80% to 20% between greeter-v1 and greeter-v2:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: greeter
spec:
 template:
 metadata:
 name: greeter-v2
 spec:
 containers:
 - image: quay.io/rhdevelopers/knative-tutorial-greeter:quarkus
 env:
 - name: MESSAGE_PREFIX
 value: Namaste
 livenessProbe:
 httpGet:
 path: /healthz
 readinessProbe:
 httpGet:
 path: /healthz
 traffic:
 - tag: v1
 revisionName: greeter-v1
 percent: 80
 - tag: v2
 revisionName: greeter-v2
 percent: 20
 - tag: latest
 latestRevision: true
 percent: 0

To roll out the greeter Canary deployment, use the following command:

$ kubectl -n chapter-2 apply -f service-canary.yaml

Discussion
As in the previous section on deployments in Recipe 2.4, the command will not create
any new Configuration/Revision/Deployment. To observe the traffic distribution you

30 | Chapter 2: Understanding Knative Serving

need to run the script $BOOK_HOME/bin/poll.sh, which is almost identical to
$BOOK_HOME/bin/call.sh but will invoke the Knative Service in a loop:

$ $BOOK_HOME/bin/poll.sh

With the poll.sh script running you will see that approximately 80% of the responses
are returned from greeter-v1 and approximately 20% from greeter-v2. See the fol‐
lowing listing for sample output:

Hi greeter => 9861675f8845 : 1
Hi greeter => 9861675f8845 : 2
Namaste greeter => 9861675f8845 : 1
Hi greeter => 9861675f8845 : 3
Hi greeter => 9861675f8845 : 4
Hi greeter => 9861675f8845 : 5
Hi greeter => 9861675f8845 : 6
Hi greeter => 9861675f8845 : 7
Hi greeter => 9861675f8845 : 8
Hi greeter => 9861675f8845 : 9
Hi greeter => 9861675f8845 : 10
Hi greeter => 9861675f8845 : 11
Namaste greeter => 9861675f8845 : 2
Hi greeter => 9861675f8845 : 12
Hi greeter => 9861675f8845 : 13
Hi greeter => 9861675f8845 : 14
Hi greeter => 9861675f8845 : 15
Hi greeter => 9861675f8845 : 16
...

You should also notice that two pods are running representing both greeter-v1 and
greeter-v2:

$ watch kubectl get pods
NAME READY STATUS AGE
greeter-v1-deployment-6f75dfd9d8-86q89 2/2 Running 12s
greeter-v2-deployment-9984bb56d-n7xvm 2/2 Running 2s

As a challenge, adjust the traffic distribution and observe the
responses while the poll.sh script is actively running.

You should now have an understanding of Knative Serving, the Knative Serving
Deployment model, how Knative Serving aids in the deployment of your applica‐
tions, and advanced deployment techniques like blue-green and Canary.

In the next chapter, we will take a deeper dive into Knative Serving’s autoscaling
capabilities.

2.5 Applying the Canary Release Pattern | 31

CHAPTER 3

Autoscaling Knative Services

Serverless-style architecture is not only about terminating your services when they
are not in use but also about scaling them up based on demand. Knative handles
these requirements effectively using its scale-to-zero and autoscaling capabilities:

Scale-to-zero
After a time of idleness your Knative Serving Service’s Revision is considered to
be inactive. Knative will terminate all the pods that correspond to that inactive
Revision, and the Routes for that inactive Revision will be mapped to Knative
Serving’s activator service. The activator becomes the endpoint for receiving and
buffering your end-user’s HTTP traffic, to allow for the autoscaler—that is, the
Knative Service’s ability to scale from zero to n pods—to do its job.

Autoscaling
Autoscaling is the ability for the Knative Service to scale out its pods based on
inbound HTTP traffic. The autoscaling feature of Knative is managed by:

• Knative Horizontal Pod Autoscaler (KPA)
• Horizontal Pod Autoscaler (HPA); the default autoscaler built into

Kubernetes

The HPA relies on three important metrics: concurrency, requests per second, and cpu.
The KPA can be thought of as an extended version of the HPA with a few tweaks to
the default HPA algorithms to make it more suited to handle the more dynamic and
load-driven Knative scaling requirements.

33

With our current setup of a Kubernetes cluster with minikube,
which is a smaller cluster with limited resources, it is easy to
demonstrate the autoscaling using the concurrency metric. Hence,
all the recipes in this chapter focus on the concurrency metric.

Before You Begin
All the recipes in this chapter will be executed from the directory $BOOK_HOME/scaling,
so change to the recipe directory by running:

$ cd $BOOK_HOME/scaling

The recipes of this chapter will deployed in the chapter-3 namespace, so switch to
the chapter-3 namespace with the following command:

$ kubectl config set-context --current --namespace=chapter-3

3.1 Configuring Knative Service for Autoscaling
Problem
You want understand how to configure Knative Serving for autoscaling.

Solution
All the scale-to-zero and autoscaling parameters are defined in a Kubernetes Config‐
Map called config-autoscaler in the knative-serving namespace. You can view
the ConfigMap with a simple kubectl command:

$ kubectl -n knative-serving get cm config-autoscaler -o yaml

The following code snippet provides an abridged version of the config-autoscaler
ConfigMap contents. We focus on the few properties that impact the recipes included
in this chapter:

apiVersion: v1
data:

 container-concurrency-target-default: "100"

 enable-scale-to-zero: "true"

 stable-window: "60s"

 scale-to-zero-grace-period: "30s"

The default container concurrency for each service pod; defaults to 100

Flag to enable or disable scale down to zero; defaults to true

34 | Chapter 3: Autoscaling Knative Services

The time period in which the requests are monitored for calls and metrics;
defaults to 60 seconds

The time period within which the inactive pods are terminated; defaults to 30
seconds

Discussion
Each Knative Service pod is configured to handle 100 concurrent requests from its
clients. The property container-concurrency-target-default of the config-

autoscaler ConfigMap is used to configure the concurrency for each service pod;
when the concurrent requests reach this limit, Knative Serving will scale up addi‐
tional pods to handle the excess load.

The scale-to-zero—that is, the ability of Knative to terminate the inactive pods—can
be controlled by the property enable-scale-to-zero. The default is true, which
instructs Knative to scale-to-zero the pod if it has not received requests within the
stable-window interval. You disable scale-to-zero to by setting this property to
false.

The stable-window is the time period in which the autoscaler is monitoring requests/
metrics; if there are zero requests to a pod over the default 60 seconds, then the
autoscaler will begin to scale-to-zero by setting it to inactive.

The scale-to-zero-grace-period is the time period in which the autoscaler is mon‐
itoring inactive pods and will attempt to terminate those pods.

The recipes in this chapter rely on the defaults and any overridden configuration will
be seen as annotations on the Knative Serving Service YAML. Check config-
autoscaler for a list of all possible autoscaling properties.

3.2 Observing Scale-to-Zero
Problem
You want to observe your Knative Service scaling down to zero.

Solution
After deployment of your Knative Service as described in Chapter 2, simply watch the
pod lifecycle with the following command:

$ watch kubectl get pods

3.2 Observing Scale-to-Zero | 35

https://oreil.ly/CHrm4
https://oreil.ly/CHrm4

Use the watch command in a new terminal window, as that will
allow you to observe the scale-to-zero and autoscaling from zero to
N. You can monitor the AGE column of the pod to measure how
long it takes to scale down. By default, it should happen shortly
after 60 seconds but before 90 seconds.

If you have not deployed the greeter Knative Serving Service, run:

$ kubectl -n chapter-3 apply -f $BOOK_HOME/basics/service.yaml
service.serving.knative.dev/greeter created

Open a new terminal window and watch the pod lifecycle with the command:

$ watch kubectl get pods
NAME READY STATUS AGE
greeter-v1-deployment-b8db5486c-jl9gv 2/2 Running 8s

And as you wait and watch, you will see the pod terminate:

NAME READY STATUS AGE
greeter-v1-deployment-b8db5486c-jl9gv 2/2 Terminating 64s

To make sure the pod is up and running, use the script call.sh:

$ $BOOK_HOME/bin/call.sh
Hi greeter => 9861675f8845 : 1

Discussion
The mapping from the actual service URL to the Knative activator URL is transparent
and is not visible by viewing the Knative Route of the corresponding Knative Service.
The reprogramming of the network from the actual service pod to the activator pod
in knative-serving is asynchronous in nature, so the scale-to-zero-grace-period
should provide enough slack for this to happen. Once the stable-window scale-to-
zero-grace-period is exceeded, the Revision will be scaled-to-zero replicas and
those pods will be terminated.

When another request targets an inactive Revision, the activator intercepts that
request and will instruct the Knative autoscaler to create new pods for that service
Revision.

Termination Period
The actual time that the autoscaler takes to terminate the unused pod—that is, the
pod that does not receive a request within stable-window—is set to inactive, and
the termination period is the sum of stable-window plus scale-to-zero-grace-
period. Using the example configuration as explained in the previous section, the
value of the termination period is 90 seconds.

36 | Chapter 3: Autoscaling Knative Services

3.3 Configuring Your Knative Service to Handle Request
Spikes
Problem
You want to configure your Knative Service to handle sudden request spikes by
changing the default concurrency setting.

Solution
In your Knative Serving Service YAML, you can add annotations that will override
the default behavior and autoscaling parameters:

autoscaling.knative.dev/target: "10"

The following listing illustrates the Knative Service Revision Template that adds the
container concurrency annotation to reconfigure it from the default 100 to 10:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: prime-generator
spec:
 template:
 metadata:
 name: prime-generator-v1
 annotations:
 # Target 10 in-flight-requests per pod.

 autoscaling.knative.dev/target: "10"
 spec:
 containers:
 - image: quay.io/rhdevelopers/prime-generator:v27-quarkus
 livenessProbe:
 httpGet:
 path: /healthz
 readinessProbe:
 httpGet:
 path: /healthz

Configure the container concurrency to be 10

Discussion
By default, the Knative Service container concurrency is set to 100 requests per pod.
With the autoscaling.knative.dev/target annotation you are now overriding that
value to be 10. You may also set this value to 0, where Knative will autoconfigure the
value. In the absence of the annotation autoscaling.knative.dev/target, Knative
by default sets this value to be 0.

3.3 Configuring Your Knative Service to Handle Request Spikes | 37

Since we need to simulate the slowness in response to observe autoscaling, the service
that you will use for doing the load test is a prime number generator using the Sieve
of Eratosthenes. The Sieve of Eratosthenes is one of the slowest and least optimal
ways to compute prime numbers within a range. The application tries to spice up the
slowness by adding memory load, which makes the Knative Service respond slowly,
thereby allowing it to autoscale.

Navigate to the recipe directory $BOOK_HOME/scaling and run:

$ kubectl apply -n chapter-3 -f service-10.yaml

The very first deployment of a Knative Serving Service will automatically scale to a
single pod; wait for that service pod to come up:

$ watch kubectl get -n chapter-3 pods
NAME READY STATUS AGE
prime-generator-v1-deployment-7464d56df-zhxzw 2/2 Running 5s

You can test the prime-generator service by using the script $BOOK_HOME/bin/call.sh
with the service name prime-generator as a parameter:

$ $BOOK_HOME/bin/call.sh prime-generator
Value should be greater than 1 but recevied 0

In order to verify your updated concurrency setting (e.g., autoscaling.kna
tive.dev/target: "10") you need to drive enough load into the system to observe
its behavior.

Sending 50 concurrent requests will cause the Knative autoscaler to scale up 7 service
pods. The formula to calculate the target number of pods is as follows:

number of pods = total number of requests / container-concurrency

In the sample code repository, we have provided a load testing script called load.sh,
and it leverages a command-line utility called hey. Run the following command to
send 50 concurrent requests to the prime-generator service:

#!/bin/bash

hey -c 50 -z 10s \

 -host "$HOST_HEADER" \

 "http://$IP_ADDRESS/?sleep=3&upto=10000&memload=100"

Invoke the hey load testing tool with a concurrency of 50 requests and for a dura‐
tion of 10 seconds

As you did earlier, pass the Host header; in this case it will be prime-
generator.chapter-3.example.com

The request URL parameters:

38 | Chapter 3: Autoscaling Knative Services

https://oreil.ly/E6BzJ
https://oreil.ly/E6BzJ

sleep

Simulates slow-performing operations so that the requests pile up by sleeping for
3 seconds

upto

Calculates the prime number up to this maximum

load

Simulates the memory load of 100 megabytes(mb)

To watch the autoscaling in action, you should open two terminal windows, one to
run the watch command watch kubectl get pods -n chapter-3 and the other to
run the load test script $BOOK_HOME/bin/load.sh.

$ $BOOK_HOME/bin/load.sh

$ watch kubectl get pods
NAME READY STATUS AGE
prime-generator-v1-deployment-6b8c59c85b-2tnb9 2/2 Running 5s
prime-generator-v1-deployment-6b8c59c85b-52295 2/2 Running 9s
prime-generator-v1-deployment-6b8c59c85b-67jdm 2/2 Running 7s
prime-generator-v1-deployment-6b8c59c85b-dm4zm 2/2 Running 7s
prime-generator-v1-deployment-6b8c59c85b-fwghr 2/2 Running 7s
prime-generator-v1-deployment-6b8c59c85b-rfm97 2/2 Running 7s
prime-generator-v1-deployment-6b8c59c85b-trmtl 2/2 Running 3s

Based on the parameters provided to the load testing script and the value of autoscal
ing.knative.dev/target: "10", you will see more than 7 pods springing to life.

If you continue watching the pod lifecycle and do not continue to send in load, you
will see that Knative will aggressively start to terminate unneeded pods:

NAME READY STATUS AGE
prime-generator-v1-deployment-6b8c59c85b-2tnb9 2/2 Terminating 66s
prime-generator-v1-deployment-6b8c59c85b-52295 2/2 Running 70s
prime-generator-v1-deployment-6b8c59c85b-67jdm 2/2 Terminating 68s
prime-generator-v1-deployment-6b8c59c85b-dm4zm 2/2 Terminating 68s
prime-generator-v1-deployment-6b8c59c85b-fwghr 2/2 Terminating 68s
prime-generator-v1-deployment-6b8c59c85b-rfm97 2/2 Terminating 68s
prime-generator-v1-deployment-6b8c59c85b-trmtl 2/2 Terminating 64s

3.4 Cold Start Latency
Problem
You want to avoid the wait time involved in scaling from zero to n pods based on
request volume by setting a floor—a minScale number of pods. You may also want to
set a ceiling—a maxScale number of pods.

3.4 Cold Start Latency | 39

Solution
The minScale and maxScale annotations on the Knative Service Template allow you
to set limits on the minimum and maximum number of pods that can be scaled:

minScale
By default, Knative will scale-to-zero—that is, your service will scale-to-zero pods
when no requests arrive within the stable-window time period. When the next
requests come in, Knative will autoscale to the appropriate number of pods to
handle those requests. This starting from zero and the associated wait time is
known as cold start latency.

If your application needs to stay particularly responsive and/or has a long startup
time, then it may be beneficial to keep a minimum number of pods always up.
This technique is also called pod warming. With Knative Serving this is achieved
by adding the annotation autoscaling.knative.dev/minScale to the Knative
Service YAML.

maxScale
Knative by default does not set an upper limit to the number of pods. This means
you are at risk of exceeding your computational resource limits. In order to miti‐
gate the risk, Knative Serving allows you to add the annotation autoscal
ing.knative.dev/maxScale to the Knative Service YAML. With maxScale you
can restrict the upper limit of the autoscaler.

In the following section you will set the minScale and maxScale on the Knative Ser‐
vice Revision Template and run a load test. You will notice that the autoscaling will
max out at 5 pods and once the requests are responded to, it will scale down to 2 and
not 0.

The following code snippet shows the Knative Service Revision Template with
minScale and maxScale annotations configured:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: prime-generator
spec:
 template:
 metadata:
 name: prime-generator-v2
 annotations:
 # the minimum number of pods to scale down to

 autoscaling.knative.dev/minScale: "2"
 # the maximum number of pods to scale up to

 autoscaling.knative.dev/maxScale: "5"
 # Target 10 in-flight-requests per pod.
 autoscaling.knative.dev/target: "10"

40 | Chapter 3: Autoscaling Knative Services

 spec:
 containers:
 - image: quay.io/rhdevelopers/prime-generator:v27-quarkus
 livenessProbe:
 httpGet:
 path: /healthz
 readinessProbe:
 httpGet:
 path: /healthz

The minimum number of pods is set to 2; these pods should always be available
even after the Knative Service has exceeded the stable-window.

The maximum number of pods is set to 5, the number of pods the service can
scale up to when it receives more requests than its container concurrency limits.

To see these settings in action, first watch your pod lifecycle with the following com‐
mand:

$ watch kubectl get pods
No resources found.

Depending on when you last invoked call.sh or load.sh, there should be no pods avail‐
able as Knative would have terminated the inactive pods.

Now, apply an update to the prime-generator service that includes the minScale and
maxScale annotations:

$ kubectl apply -n chapter-3 -f service-min-max-scale.yaml

You should see an immediate response in your watch kubectl get pods terminal as
shown here:

$ watch kubectl get pods
NAME READY STATUS AGE
prime-generator-v2-deployment-84f459b57f-8kp6m 2/2 Running 14s
prime-generator-v2-deployment-84f459b57f-rlrqt 2/2 Running 10s

Discussion
You will notice that the prime-generator has been scaled up to 2 replicas as
described by the autoscaling.knative.dev/minScale value and those pods will not
be automatically scaled down to zero even after the termination period.

The final test is to attempt to overload the service with too many requests by running
the load test script $BOOK_HOME/bin/load.sh. You will observe that maxScale will limit
the autoscaler to 5 pods:

$ $BOOK_HOME/bin/load.sh

3.4 Cold Start Latency | 41

$ watch kubectl get pods
NAME READY STATUS AGE
prime-generator-v2-deployment-84f459b57f-6vxxx 2/2 Running 5s
prime-generator-v2-deployment-84f459b57f-8kp6m 2/2 Running 2m35s
prime-generator-v2-deployment-84f459b57f-8trh2 2/2 Running 5s
prime-generator-v2-deployment-84f459b57f-ldg8m 2/2 Running 5s
prime-generator-v2-deployment-84f459b57f-rlrqt 2/2 Running 2m39s

And if you wait long enough, without another spike in requests, Knative Serving will
scale down the unwanted pods:

NAME READY STATUS AGE
prime-generator-v2-deployment-84f459b57f-6vxxx 2/2 Terminating 68s
prime-generator-v2-deployment-84f459b57f-8kp6m 2/2 Running 10m
prime-generator-v2-deployment-84f459b57f-8trh2 2/2 Terminating 68s
prime-generator-v2-deployment-84f459b57f-ldg8m 2/2 Terminating 68s
prime-generator-v2-deployment-84f459b57f-rlrqt 2/2 Running 10m

In this chapter, you learned about Knative Serving autoscaling behaviors by observing
the default configuration and behavior, overriding the default Knative Serving con‐
currency configuration, and addressing cold start latency and an unlimited upper
boundary.

In the next chapter, you will learn how to make your Knative Service respond to
external events, such as a message received at a message broker topic.

42 | Chapter 3: Autoscaling Knative Services

CHAPTER 4

Knative Eventing

In this chapter, we present recipes that will help you get started with Knative Event‐
ing. We will start with a high-level overview of the usage patterns and then drill down
into specific steps to connect the various components together into end-to-end work‐
ing examples.

As previously described in Chapter 1, Knative has two major subprojects: Serving and
Eventing. With Serving you have dynamic autoscaling, including scaling down to
zero pods, based on the absence of HTTP traffic load. With Eventing, you now have
that same autoscaling capability but bridged into other protocols or from other sour‐
ces beyond HTTP. For example, a barrage of messages flowing through an Apache
Kafka topic can cause autoscaling of your Kubernetes-based service to handle those
messages. Or perhaps a scheduled event via cron can cause your service to awake
from its slumber and perform its duties.

CloudEvents
CloudEvents is a specification for describing event data in a common way. An event
might be produced by any number of sources (e.g., Kafka, S3, GCP PubSub, MQTT),
and as a software developer, you want a common abstraction for all event inputs.

Usage Patterns
There are three primary usage patterns with Knative Eventing:

Source to Sink
Source to Sink provides the simplest getting started experience with Knative
Eventing. It provides single Sink—that is, event receiving service—with no

43

https://cloudevents.io

queuing, backpressure, and filtering. Source to Sink does not support replies,
which means the response from the Sink Service is ignored. As shown in
Figure 4-1, the responsibility of the Event Source is just to deliver the message
without waiting for the response from the Sink; hence, it will be appropriate to
compare Source to Sink to the fire and forget messaging pattern.

Figure 4-1. Source to Sink

Channels and Subscriptions
With Channels and Subscriptions, the Knative Eventing system defines a Channel,
which can connect to various backends such as In-Memory, Kafka, and GCP
PubSub for sourcing the events. Each Channel can have one or more Subscribers
in the form of Sink Services as shown in Figure 4-2, which can receive the event
messages and process them as needed. Each message from the Channel is format‐
ted as a CloudEvent and sent further up in the chain to other Subscribers for fur‐
ther processing. The Channels and Subscriptions usage pattern does not have the
ability to filter messages.

Figure 4-2. Channels and Subscriptions

Brokers and Triggers
Brokers and Triggers are similar to Channels and Subscriptions, except that they
support filtering of events. Event filtering is a method that allows the Subscribers
to show an interest in a certain set of messages that flows into the Broker. For
each Broker, Knative Eventing will implicitly create a Knative Eventing Channel.
As shown in Figure 4-3, the Trigger gets itself subscribed to the Broker and
applies the filter on the messages on its subscribed Broker. The filters are applied
on the CloudEvent attributes of the messages, before delivering the message to
the interested Sink Services (Subscribers).

44 | Chapter 4: Knative Eventing

Figure 4-3. Brokers and Triggers

Before You Begin
All the recipes in this chapter will be executed from the directory
$BOOK_HOME/eventing, so change to the recipe directory by running:

$ cd $BOOK_HOME/eventing

The recipes in this chapter will be deployed in the chapter-4 namespace, so switch to
the chapter-4 namespace with the following command:

$ kubectl config set-context --current --namespace=chapter-4

The recipes in this chapter will enable us to do eventing with Knative and will help us
in understanding how Knative Serving Services can respond to external events via
Knative Eventing.

4.1 Producing Events with Eventing Sources
Problem
You need a way to connect to and receive events into your application.

Solution
Knative Eventing Sources are software components that emit events. The job of a
Source is to connect to, drain, capture, and potentially buffer events, often from an
external system, and then relay those events to the Sink.

Knative Eventing Sources install the following four sources out-of-the-box:

$ kubectl api-resources --api-group=sources.eventing.knative.dev
NAME APIGROUP NAMESPACED KIND
apiserversources sources.eventing.knative.dev true ApiServerSource
containersources sources.eventing.knative.dev true ContainerSource
cronjobsources sources.eventing.knative.dev true CronJobSource
sinkbindings sources.eventing.knative.dev true SinkBinding

4.1 Producing Events with Eventing Sources | 45

Discussion
The ApiServerSource allows you to listen in on Kubernetes API events, like those
events provided by kubectl get events.

The ContainerSource allows you to create your own container that emits events
which can be targeted at Sinks—your specific Service.

The CronJobSource allows you to specify a cron timer, a recurring task that will emit
an event to your Sink on a periodic basis. The CronJobSource is often the easiest way
to verify that Knative Eventing is working properly.

SinkBindings allows you to link any addressable Kubernetes resource to receive
events from any other Kubernetes resource that may produce events.

There are many other Source types, and you can review the current list of Sources
within the Knative documentation.

Before we take deep dive into the recipes in this chapter, let’s quickly understand the
structure of a Knative Event Source resource YAML:

apiVersion: sources.eventing.knative.dev/v1alpha1

kind: CronJobSource
metadata:
 name: eventinghello-cronjob-source

spec:
 schedule: "*/2 * * * *"
 data: '{"key": "every 2 mins"}'

 sink:
 ref:
 apiVersion: serving.knative.dev/v1alpha1
 kind: Service
 name: eventinghello

Knative Sources are described as CRDs; therefore, you construct an artifact with
the correct kind

spec will be unique per Source, per kind

sink will be described next

4.2 Receiving Events with Knative Eventing Sinks
Problem
You need to connect your custom service to the events from an Event Source.

46 | Chapter 4: Knative Eventing

https://oreil.ly/t33P7

Solution
Knative Eventing Sink is how you specify the event receiver—that is, the consumer of
the event. Sinks can be invoked directly in a point-to-point fashion by referencing
them via the Event Source’s sink as shown here:

apiVersion: sources.eventing.knative.dev/v1alpha1
kind: CronJobSource
metadata:
 name: eventinghello-cronjob-source
spec:
 schedule: "*/2 * * * *"
 data: '{"key": "every 2 mins"}'

 sink:
 ref:

 apiVersion: serving.knative.dev/v1alpha1
 kind: Service

 name: eventinghello

sink can target any Kubernetes Service or

a Knative Serving Service

deployed as “eventinghello”

Discussion
The Sinks can target one of your Services—your code that will receive an HTTP
POST with a CloudEvent payload. However, the Sink is also very flexible; it might
point to a Channel (see Recipe 4.9 or a Broker (see Recipe 4.10), allowing for a
publish-subscribe messaging pattern with one or more potential receivers. The Sink is
often your Knative or Kubernetes Service that wishes to react to a particular event.

4.3 Deploying a Knative Eventing Service
Problem
Your Knative or Kubernetes Service needs to receive input from Knative Eventing in a
generic fashion, as events may come from many potential sources.

Solution
Your code will handle an HTTP POST as shown in the following listing, where the
CloudEvent data is available as HTTP headers as well as in the body of the request:

 @PostMapping("/")
 public ResponseEntity<String> myPost (

4.3 Deploying a Knative Eventing Service | 47

 HttpEntity<String> http) {

 System.out.println("ce-id=" + http.getHeaders().get("ce-id"));
 System.out.println("ce-source=" + http.getHeaders().get("ce-source"));
 System.out.println("ce-specversion=" + http.getHeaders()
 .get("ce-specversion"));
 System.out.println("ce-time=" + http.getHeaders().get("ce-time"));
 System.out.println("ce-type=" + http.getHeaders().get("ce-type"));
 System.out.println("content-type=" + http.getHeaders().getContentType());
 System.out.println("content-length=" + http.getHeaders().getContentLength());

 System.out.println("POST:" + http.getBody());
 }

The CloudEvent SDK provides a class library and framework integration for various
language runtimes such as Go, Java, and Python.

Additional details on the CloudEvent to HTTP mapping can be found in the
CloudEvent GitHub repository.

The following listing shows a simple Knative Service (Sink):

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: eventinghello
spec:
 template:
 metadata:
 name: eventinghello-v1
 annotations:

 autoscaling.knative.dev/target: "1"
 spec:
 containers:
 - image: quay.io/rhdevelopers/eventinghello:0.0.1

A concurrency of 1 HTTP request (an event) is consumed at a time. Most appli‐
cations/services can easily handle many events concurrently and Knative’s out-of-
the-box default is 100. For the purposes of experimentation, it is interesting to see
the behavior when you use 1 as the autoscaling target.

Discussion
You can deploy and verify that the eventinghello Sink Service has been deployed
successfully by looking for READY marked as True:

$ kubectl -n chapter-4 apply -f eventing-hello-sink.yaml
service.serving.knative.dev/eventinghello created
$ kubectl get ksvc
NAME URL READY
eventinghello http://eventinghello.myeventing.example.com True

48 | Chapter 4: Knative Eventing

https://github.com/cloudevents
https://oreil.ly/QaNIP
https://github.com/cloudevents/spec
http://eventinghello.myeventing.example.com

The default behavior of Knative Serving is that the very first deployment of a Knative
Serving Service will automatically scale up to one pod, and after about 90 seconds it
will autoscale down to zero pods.

You can actively watch the pod lifecycle with the following command:

$ watch kubectl get pods

You can monitor the logs of the eventinghello pod with:

$ stern eventinghello -c user-container

Wait until eventinghello scales to zero pods before moving on.

4.4 Connecting a Source to the Service
Problem
You have a Knative Serving Service (Sink) and need to connect it to a Knative Event‐
ing Source to test its autoscaling behavior.

Solution
Deploy a CronJobSource, as it is the easiest solution to verify if Knative Eventing is
responding to events correctly. To deploy a CronJobSource, run the following com‐
mand:

$ kubectl -n chapter-4 apply -f eventinghello-source.yaml
cronjobsource.sources.eventing.knative.dev/eventinghello-cronjob-source created
$ kubectl -n chapter-4 get cronjobsource
NAME READY AGE
eventinghello-cronjob-source True 10s

Discussion
The deployment of a CronJobSource also produces a pod with a prefix of
“cronjobsource-eventinghell” as shown:

$ watch kubectl get pods
NAME READY STATUS AGE
cronjobsource-eventinghello-54b9ef12-2c2f-11ea 1/1 Running 14s

Based on our cron expression, after two minutes it will kick off an event that will
cause the eventinghello pod to scale up as shown the following listing:

$ watch kubectl get pods
NAME READY STATUS AGE
cronjobsource-eventinghell-54b9ef12-2c2f-11ea 1/1 Running 97s
eventinghello-v1-deployment-7cfcb664ff-r694p 2/2 Running 10s

4.4 Connecting a Source to the Service | 49

After approximately 60 seconds, the eventinghello will autoscale down to zero pods,
as it is a Knative Serving Service that will only be available while it is actively receiv‐
ing events:

$ watch kubectl get pods
NAME READY STATUS AGE
cronjobsource-eventinghell-54b9ef12-2c2f-11ea 1/1 Running 2m28s
eventinghello-v1-deployment-7cfcb664ff-r694p 2/2 Terminating 65s

You can follow logs to see the CloudEvent details by using stern:

$ stern eventinghello -c user-container
ce-id=a1e0cbea-8f66-4fa6-8f3c-e5590c4ee147
ce-source=/apis/v1/namespaces/chapter-5/cronjobsources/
eventinghello-cronjob-source
ce-specversion=1.0
ce-time=2020-01-01T00:44:00.000889221Z
ce-type=dev.knative.cronjob.event
content-type=application/json
content-length=22
POST:{"key":"every 2 mins"}

Finally, when you are done with experimentation, simply delete the source and
service:

$ kubectl -n chapter-4 delete -f eventinghello-source.yaml
cronjobsource.sources.eventing.knative.dev "eventinghello-cronjob-source" deleted
$ kubectl -n chapter-4 delete -f eventing-hello-sink.yaml
service.serving.knative.dev "eventinghello" deleted
$ kubectl get pods -n chapter-4
No resources found.

4.5 Deploying an Apache Kafka Cluster
Problem
You need to deploy an Apache Kafka cluster.

Solution
One of the easiest ways to deploy an Apache Kafka cluster is to use Strimzi, an opera‐
tor and set of CRDs that deploys Apache Kafka inside of a Kubernetes cluster.

Discussion
As part of the upcoming recipes in this chapter, we will be deploying a Knative Source
(see Recipe 4.6) that will respond to Apache Kafka Topic messages (events). Before
getting to those recipes, we need to first deploy Apache Kafka inside your Kubernetes

50 | Chapter 4: Knative Eventing

https://strimzi.io

cluster. The strimzi Kubernetes operator can be used to deploy the Apache Kafka
cluster in your Kubernetes cluster.

Run the following command to create the kafka namespace and deploy Apache
Kafka into it:

$ kubectl create namespace kafka
$ curl -L \
https://github.com/strimzi/strimzi-kafka-operator\
/releases/download/0.16.2/strimzi-cluster-operator-0.16.2.yaml \
 | sed 's/namespace: .*/namespace: kafka/' \
 | kubectl apply -f - -n kafka

Wait for the strimzi-cluster-operator to be running:

$ watch kubectl get pods -n kafka
NAME READY STATUS AGE
strimzi-cluster-operator-85f596bfc7-7dgds 1/1 Running 1m2s

The strimzi operator would have installed several Apache Kafka–related CRDs, which
can be used to create Apache Kafka core resources such as a topic, users, connectors,
etc. You can verify the CRDs that are available by querying api-resources:

$ kubectl api-resources --api-group=kafka.strimzi.io
kafkabridges.kafka.strimzi.io 2019-12-28T14:53:14Z
kafkaconnects.kafka.strimzi.io 2019-12-28T14:53:14Z
kafkaconnects2is.kafka.strimzi.io 2019-12-28T14:53:14Z
kafkamirrormakers.kafka.strimzi.io 2019-12-28T14:53:14Z
kafkas.kafka.strimzi.io 2019-12-28T14:53:14Z
kafkatopics.kafka.strimzi.io 2019-12-28T14:53:14Z
kafkausers.kafka.strimzi.io 2019-12-28T14:53:14Z

Now with the Apache Kafka operator running, you can deploy and verify a single-
node Apache Kakfa cluster by running the command:

$ kubectl -n kafka apply -f kafka-broker-my-cluster.yaml
kafka.kafka.strimzi.io/my-cluster created
$ watch kubectl get pods -n kafka
NAME READY STATUS AGE
my-cluster-entity-operator-7d677bdf7b-jpws7 3/3 Running 85s
my-cluster-kafka-0 2/2 Running 110s
my-cluster-zookeeper-0 2/2 Running 2m22s
strimzi-cluster-operator-85f596bfc7-7dgds 1/1 Running 4m22s

The Kubernetes CRD resource $BOOK_HOME/eventing/kafka-broker-my-cluster.yaml
will deploy a single Zookeeper, Kafka Broker, and an Entity-Operator. The Entity-
Operator is responsible for managing different custom resources such as KafkaTopic
and KafkaUser.

Now that you have an Apache Kafka cluster deployed, you can create a Kafka Topic
using the KafkaTopic CRD. The following listing shows how to create a Kafka
Topic named my-topic:

4.5 Deploying an Apache Kafka Cluster | 51

https://oreil.ly/5SCVG
https://oreil.ly/cjoIL

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:

 partitions: 10
 replicas: 1

partitions: n allows for more concurrent scale-out of Sink pods. In theory, up
to 10 pods will scale-up if there are enough messages flowing through the Kafka
Topic.

You can choose to skip the manual pre-creation of a KafkaTopic
but the automatically generated topics will have partitions set to 1
by default.

Create and verify the topic:

$ kubectl -n kafka create -f kafka-topic-my-topic.yaml
kafkatopic.kafka.strimzi.io/my-topic created
$ kubectl -n kafka get kafkatopics
NAME PARTITIONS REPLICATION FACTOR
my-topic 10 1

Verify that your Kafka Topic is working correctly by connecting a simple producer
and consumer and creating some test messages. The sample code repository includes
a script for producing Kafka messages called kafka-producer.sh. Execute the script
and type in one, two, three, hitting Enter/Return after each string:

Producer
$ $BOOK_HOME/bin/kafka-producer.sh
>one
>two
>three

Consumer
You should also leverage the sample code repository’s kafka-consumer.sh script to see
the message flow through the topic. Open a new terminal and run:

$ $BOOK_HOME/bin/kafka-consumer.sh
one
two
three

52 | Chapter 4: Knative Eventing

You can use Ctrl-C to stop producer and consumer interaction and their associated
pods.

4.6 Sourcing Apache Kafka Events with Knative Eventing
Problem
You wish to connect to an Apache Kafka cluster and have those messages flow
through Knative Eventing.

Solution
Use the Knative Eventing KafkaSource to have the Kafka messages flow through the
Knative Eventing Channels. You can deploy the Knative KafkaSource by running the
command:

$ kubectl apply \
-f https://github.com/knative/eventing-contrib/\
releases/download/v0.12.2/kafka-source.yaml

The previous step deploys the Knative KafkaSource in the knative-sources name‐
space as well as a CRD, ServiceAccount, ClusterRole, etc. Verify that the Knative
Source namespace includes the kafka-controller-manager-0 pod:

$ watch kubectl get pods -n knative-sources
NAME READY STATUS AGE
kafka-controller-manager-0 1/1 Running 1m17s

You should also deploy the Knative Kafka Channel that can be used to connect the
Knative Eventing Channel with an Apache Kafka cluster backend. To deploy a Kna‐
tive Kafka Channel, run:

$ curl -L "https://github.com/knative/eventing-contrib/\
releases/download/v0.12.2/kafka-channel.yaml" \
 | sed 's/REPLACE_WITH_CLUSTER_URL/my-cluster-kafka-bootstrap.kafka:9092/' \
 | kubectl apply --filename -

“my-cluster-kafka-bootstrap.kafka:9092” comes from kubectl get
services -n kafka.

4.6 Sourcing Apache Kafka Events with Knative Eventing | 53

Discussion
Look for three new pods in the knative-eventing namespace with the prefix “kafka”:

$ watch kubectl get pods -n knative-eventing
NAME READY STATUS AGE
eventing-controller-666b79d867-kq8cc 1/1 Running 64m
eventing-webhook-5867c98d9b-hzctw 1/1 Running 64m
imc-controller-7c4f9945d7-s59xd 1/1 Running 64m
imc-dispatcher-7b55b86649-nsjm2 1/1 Running 64m
kafka-ch-controller-7c596b6b55-fzxcx 1/1 Running 33s
kafka-ch-dispatcher-577958f994-4f2qs 1/1 Running 33s
kafka-webhook-74bbd99f5c-c84ls 1/1 Running 33s
sources-controller-694f8df9c4-pss2w 1/1 Running 64m

And you should also find some new api-resources as shown here:

$ kubectl api-resources --api-group=sources.eventing.knative.dev
NAME APIGROUP NAMESPACED KIND
apiserversources sources.eventing.knative.dev true ApiServerSource
containersources sources.eventing.knative.dev true ContainerSource
cronjobsources sources.eventing.knative.dev true CronJobSource
kafkasources sources.eventing.knative.dev true KafkaSource
sinkbindings sources.eventing.knative.dev true SinkBinding

$kubectl api-resources --api-group=messaging.knative.dev
NAME SHORTNAMES APIGROUP NAMESPACED KIND
channels ch messaging.knative.dev true Channel
inmemorychannels imc messaging.knative.dev true InMemoryChannel
kafkachannels kc messaging.knative.dev true KafkaChannel
parallels messaging.knative.dev true Parallel
sequences messaging.knative.dev true Sequence
subscriptions sub messaging.knative.dev true Subscription

Now that all of your infrastructure is configured, you can deploy the Knative Serving
Service (Sink) by running the command:

$ kubectl apply -n chapter-5 -f eventing-hello-sink.yaml
service.serving.knative.dev/eventinghello created
$ kubectl get ksvc
NAME URL READY
eventinghello http://eventinghello.kafka.example.com True

Make sure to follow the logs using stern:

$ stern eventinghello -c user-container

The initial deployment of eventinghello will cause it to scale up to one pod. It will
be around until it hits its scale-down time limit. Allow it to scale down to zero pods
before continuing.

54 | Chapter 4: Knative Eventing

http://eventinghello.kafka.example.com

Create a KafkaSource for my-topic by connecting your Kafka Topic my-topic to
eventinghello:

apiVersion: sources.eventing.knative.dev/v1alpha1
kind: KafkaSource
metadata:
 name: mykafka-source
spec:
 consumerGroup: knative-group

 bootstrapServers: my-cluster-kafka-bootstrap.kafka:9092
 topics: my-topic

 sink:
 ref:
 apiVersion: serving.knative.dev/v1alpha1
 kind: Service
 name: eventinghello

“my-cluster-kafka-bootstrap.kafka:9092” can be found via kubectl get -n

kaftka services

This is another example of a direct Source to Service

The deployment of KafkaSource will result in a new pod prefixed with “mykafka-
source”:

$ kubectl -n chapter-4 apply -f mykafka-source.yaml
kafkasource.sources.eventing.knative.dev/mykafka-source created
$ watch kubectl get pods
NAME READY STATUS RESTARTS AGE
mykafka-source-vxs2k-56548756cc-j7m7v 1/1 Running 0 11s

Since we had test messages of “one,” “two,” and “three” from earlier,
you might see the eventinghello service awaken to process those
messages.
Wait for eventinghello to scale down to zero pods before moving
on, and then push more Kafka messages into my-topic.

Let’s now start an Apache Kafka producer that will send a message to my-topic:

$ $BOOK_HOME/bin/kafka-producer.sh

And then enter the following JSON-formatted messages:

{"hello":"world"}

{"hola":"mundo"}

{"bonjour":"le monde"}

{"hey": "duniya"}

4.6 Sourcing Apache Kafka Events with Knative Eventing | 55

Knative Eventing events through the KafkaSource must be JSON-
formatted.

While making sure to monitor the logs of the eventinghello pod:

$ stern eventinghello -c user-container

ce-id=partition:1/offset:1
ce-source=/apis/v1/namespaces/kafka/kafkasources/mykafka-source#my-topic
ce-specversion=1.0
ce-time=2020-01-01T01:16:12.886Z
ce-type=dev.knative.kafka.event
content-type=application/json
content-length=17
POST:{"hey": "duniya"}

The sample output has been modified for readability and format‐
ting reasons. You can see the logging output of all your JSON-
based event input in the terminal where you are watching the
eventinghello logs.

4.7 Autoscaling with Apache Kafka and Knative Eventing
Problem
Now that you have a connected a Kafka Topic to Knative Eventing, you wish to see it
scale out to greater than a single pod.

Solution
You simply need to set the autoscaling target low enough by adding the annotation
autoscaling.knative.dev/target: "1", while simultaneously pushing enough
messages through the topic. You have already set the target to be 1 when deploying
the eventinghello sink as shown in the following listing:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: eventinghello
spec:
 template:
 metadata:
 name: eventinghello-v1
 annotations:

 autoscaling.knative.dev/target: "1"

56 | Chapter 4: Knative Eventing

 spec:
 containers:
 - image: quay.io/rhdevelopers/eventinghello:0.0.1

The Knative Serving Sink Service was defined with the autoscaling annotation
that limits concurrency to approximately one pod per event (Kafka message)

Discussion
With a concurrency factor of 1, if you are able to push in a number of Kafka message
rapidly, you will see more than one eventinghello pod scaled up to handle the load.

You simply need an application that allows you to push in messages rapidly. Launch
the Kafka Spammer application and push in at least three messages, then run the fol‐
lowing command to start the kafka-spammer pod:

$ kubectl -n kafka run kafka-spammer \
 --image=quay.io/rhdevelopers/kafkaspammer:1.0.2

You then exec into the running kafka-spammer pod by running the following
command:

$ KAFKA_SPAMMER_POD=$(kubectl -n kafka get pod -l "run=kafka-spammer" \
 -o jsonpath={.items[0].metadata.name})
$ kubectl -n kafka exec -it $KAFKA_SPAMMER_POD -- /bin/sh

Use curl to send in three messages:

$ curl localhost:8080/3

You should see about three eventinghello pods coming to life, as shown in the fol‐
lowing listing:

$ watch kubectl get pods
NAME READY STATUS AGE
eventinghello-v1-deployment-65c9b9c7df-8rwqc 1/2 Running 6s
eventinghello-v1-deployment-65c9b9c7df-q7pcf 1/2 Running 4s
eventinghello-v1-deployment-65c9b9c7df-zht2t 1/2 Running 6s
kafka-spammer-77ccd4f9c6-sx5j4 1/1 Running 26s
my-cluster-entity-operator-7d677bdf7b-jpws7 3/3 Running 27m
my-cluster-kafka-0 2/2 Running 27m
my-cluster-zookeeper-0 2/2 Running 28m
mykafka-source-vxs2k-56548756cc-j7m7v 1/1 Running 5m12s
strimzi-cluster-operator-85f596bfc7-7dgds 1/1 Running 30m

The events are not being evenly distributed across the various
eventinghello pods; the first pod up starts consuming them all
immediately.

4.7 Autoscaling with Apache Kafka and Knative Eventing | 57

https://oreil.ly/kW-wm

To close out the spammer, use exit and then delete its deployment:

$ kubectl delete -n kafka deployment kafka-spammer

4.8 Using a Kafka Channel as the Default Knative Channel
Problem
You want to use Apache Kafka as the default Channel backend for Knative Eventing.

Solution
Persistence and Durability are two very important features of any messaging-based
architecture. The Knative Channel has built-in support for durability. Durability of
messages becomes ineffective if the Knative Eventing Channel does not support per‐
sistence. Without persistence, it will not be able to deliver the messages to Subscribers
that might be offline at the time of message delivery.

By default all Knative Channels created by the Knative Eventing API use InMemory‐
Channel (IMC), which does not have the capability to persist messages. To enable
persistence we need to use one of the supported Channels such as GCP PubSub,
Kafka, or Neural Autonomic Transport System (NATS) as the default Knative Chan‐
nel backend.

We installed Apache Kafka earlier in Recipe 4.6. Let’s now configure it to be the
default Knative Channel backend:

apiVersion: v1
kind: ConfigMap
metadata:
 name: default-ch-webhook
 namespace: knative-eventing
data:
 default-ch-config: |

 clusterDefault:
 apiVersion: messaging.knative.dev/v1alpha1
 kind: InMemoryChannel

 namespaceDefaults:
 chapter-4:
 apiVersion: messaging.knative.dev/v1alpha1
 kind: KafkaChannel
 spec:
 numPartitions: 1
 replicationFactor: 1

For the cluster we will still use the default InMemoryChannel

58 | Chapter 4: Knative Eventing

https://oreil.ly/lFNs9
https://oreil.ly/Er9RB

For the namespace chapter-4, all Knative Eventing Channels will use
KafkaChannel as the default

Run the following command to apply the Knative Eventing Channel configuration:

$ kubectl apply -f default-kafka-channel.yaml

Discussion
Since you have now made all Knative Eventing Channels of chapter-4 to be Kafka‐
Channel, creating a Knative Eventing Channel in the chapter-4 namespace will
result in a corresponding Kafka Topic being created. Let’s now verify it by creating a
sample Channel as shown in the following listing:

cat <<EOF | kubectl apply -f -
apiVersion: messaging.knative.dev/v1alpha1
kind: Channel
metadata:
 name: my-events-ch
 namespace: chapter-4
spec: {}
EOF

When you now list the topics that are available in Kafka using the script
$BOOK_HOME/bin/kafka-list-topics.sh, you should see a topic corresponding to your
Channel my-events-ch:

$ $BOOK_HOME/bin/kafka-list-topics.sh
knative-messaging-kafka.chapter-4.my-events-ch

For each Knative Eventing Channel that you create, a Kafka Topic will be created. The
topic’s name will follow a convention like knative-messaging-kafka.<your-

channel-namespace>.<your-channel-name>.

4.9 Using Knative Channels and Subscriptions
Problem
You would like to have multiple Sinks with potentially many services responding to
events.

Solution
Use Knative Eventing Channels and Subscriptions:

4.9 Using Knative Channels and Subscriptions | 59

Channels
Channels are an event-forwarding and persistence layer where each Channel is a
separate Kubernetes Custom Resource. A Channel may be backed by Apache
Kafka or InMemoryChannel.

Subscriptions
Subscriptions are how you register your service to listen to a particular channel.

The use of Channels and Subscriptions allows you to decouple the producers and
consumers of events.

The recipe is as follows:

1. Create a Channel
2. Create a Source to Sink to the Channel
3. Create at least two Sink Services
4. Create Subscriptions to register your Sink Services with the Channel

Create a Channel:

apiVersion: messaging.knative.dev/v1alpha1
kind: Channel
metadata:
 name: eventinghello-ch

Verify that your Channel was created successfully:

$ kubectl -n chapter-4 create -f eventinghello-channel.yaml
channel.messaging.knative.dev/eventinghello-ch created
$ kubectl get ch
NAME READY
eventinghello-ch True
URL
http://eventinghello-ch-kn-channel.chapter-5.svc.cluster.local

Then you need to create a Source that will send events to the Channel:

apiVersion: sources.eventing.knative.dev/v1alpha1
kind: CronJobSource
metadata:
 name: my-cjs
spec:
 schedule: "*/2 * * * *"
 data: '{"message": "From CronJob Source"}'
 sink:
 ref:

 apiVersion: messaging.knative.dev/v1alpha1

 kind: Channel
 name: eventinghello-ch

60 | Chapter 4: Knative Eventing

http://eventinghello-ch-kn-channel.chapter-5.svc.cluster.local

The Channel API is in the api-group messaging.eventing.knative.dev

kind is a Channel instead of direct to a specific service; the default is an
InMemoryChannel implementation

Deploy and verify that your CronJobSource is running:

$ kubectl -n chapter-4 create -f eventinghello-source-ch.yaml
cronjobsource.sources.eventing.knative.dev/my-cjs created
$ kubectl -n chapter-4 get cronjobsource
NAME READY AGE
my-cjs True 8s

Now you create the Sink services that will become the Subscribers:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: eventinghelloa
spec:
 template:
 metadata:

 name: eventinghelloa-v1
 annotations:
 autoscaling.knative.dev/target: "1"
 spec:
 containers:
 - image: quay.io/rhdevelopers/eventinghello:0.0.1

The string eventinghelloa will help you identify this particular service:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:
 name: eventinghellob
spec:
 template:
 metadata:

 name: eventinghellob-v1
 annotations:
 autoscaling.knative.dev/target: "1"
 spec:
 containers:
 - image: quay.io/rhdevelopers/eventinghello:0.0.1

The string eventinghellob will help you identify this particular service:

$ kubectl -n chapter-4 create -f eventing-helloa-sink.yaml
service.serving.knative.dev/eventinghelloa created
$ kubectl -n chapter-4 create -f eventing-hellob-sink.yaml
service.serving.knative.dev/eventinghellob created

4.9 Using Knative Channels and Subscriptions | 61

Now create the appropriate Subscription for eventinghelloa to the Channel
eventinghello-ch:

apiVersion: messaging.knative.dev/v1alpha1
kind: Subscription
metadata:
 name: eventinghelloa-sub
spec:
 channel:
 apiVersion: messaging.knative.dev/v1alpha1
 kind: Channel
 name: eventinghello-ch
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1alpha1
 kind: Service
 name: eventinghelloa

And create the appropriate Subscription for eventinghellob to the Channel
eventinghello-ch:

apiVersion: messaging.knative.dev/v1alpha1
kind: Subscription
metadata:
 name: eventinghellob-sub
spec:
 channel:
 apiVersion: messaging.knative.dev/v1alpha1
 kind: Channel
 name: eventinghello-ch
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1alpha1
 kind: Service
 name: eventinghellob

$ kubectl -n chapter-4 create -f eventing-helloa-sub.yaml
subscription.messaging.knative.dev/eventinghelloa-sub created
$ kubectl -n chapter-4 create -f eventing-hellob-sub.yaml
subscription.messaging.knative.dev/eventinghellob-sub created

Discussion
If you wait approximately two minutes for the CronJobSource, you will see both
eventinghelloa and eventinghellob begin to run:

$ watch kubectl get pods
NAME READY STATUS AGE
cronjobsource-my-cjs-93544f14-2bf9-11ea-83c7-08002737670c 1/1 Running 2m15s
eventinghelloa-1-deployment-d86bf4847-hvbk6 2/2 Running 5s
eventinghellob-1-deployment-5c986c7586-4clpb 2/2 Running 5s

62 | Chapter 4: Knative Eventing

Once you are done with your experimentation, you can delete the event source
my-cjs and eventinghelloa and eventinghellob:

$ kubectl -n chapter-4 delete -f eventing-helloa-sink.yaml
$ kubectl -n chapter-4 delete -f eventing-helloa-sub.yaml
$ kubectl -n chapter-4 delete -f eventing-hellob-sink.yaml
$ kubectl -n chapter-4 delete -f eventing-hellob-sub.yaml
$ kubectl -n chapter-4 delete -f eventinghello-source-ch.yaml

4.10 Using Knative Eventing Brokers and Triggers
Problem
You need event filtering because, by default, all the events flowing through a Channel
will be sent to all Subscribers. In some cases, the Subscriber wishes to receive only a
set of messages based on certain criteria.

Solution
Use the Knative Eventing Broker and Trigger Custom Resources to allow for
CloudEvent attribute filtering.

The recipe is as follows:

1. Inject the default Broker
2. Create at least two Sink Services
3. Create Triggers to register your Sink Services with the Channel
4. Push some events

Labeling the chapter-4 namespace with knative-eventing-injection=enabled as
shown in the following code will make Knative Eventing deploy a default Knative
Eventing Broker and its related ingress:

$ kubectl label namespace chapter-4 knative-eventing-injection=enabled

Verify that the default Broker is running:

$ kubectl --namespace chapter-4 get broker
NAME READY REASON URL AGE
default True http://default-broker.chapter-4.svc.cluster.local 22s

This will also start two additional pods named default-broker-filter and
default-broker-ingress:

$ watch kubectl get pods
NAME READY STATUS AGE
default-broker-filter-c6654bccf-qb272 1/1 Running 18s
default-broker-ingress-7479966dc7-99xvm 1/1 Running 18s

4.10 Using Knative Eventing Brokers and Triggers | 63

http://default-broker.chapter-4.svc.cluster.local

Now that you have the Broker configured, you need to create the Sinks eventing
aloha and eventingbonjour, which will receive the filtered events.

Run the following command to deploy and verify the Knative Serving Services
eventingaloha and eventingbonjour:

$ kubectl -n chapter-4 create -f eventing-aloha-sink.yaml
service.serving.knative.dev/eventingaloha created
$ kubectl -n chapter-4 create -f eventing-bonjour-sink.yaml
service.serving.knative.dev/eventingbonjour created
$ kubectl get ksvc
NAME URL READY
eventingaloha http://eventingaloha.myeventing.example.com True
eventingbonjour http://eventingbonjour.myeventing.example.com True

The image being used by both of these services is identical. How‐
ever, the difference between the names aloha and bonjour will
make obvious which one is receiving a particular event.

$ watch kubectl get pods
NAME READY STATUS AGE
default-broker-filter-c6654bccf-6448v 1/1 Running 8m40s
default-broker-ingress-74b49c78f4-mnskg 1/1 Running 8m40s
eventingaloha-v1-deployment-9b46d459b-f8pfr 2/2 Running 30s
eventingbonjour-v1-deployment-fcd46b4dc-x6wvc 2/2 Running 18s

Wait approximately 60 seconds for eventingaloha and eventingbonjour to termi‐
nate and scale down to zero before proceeding.

Now create the Trigger for eventingaloha that will associate the filtered events to a
service:

apiVersion: eventing.knative.dev/v1alpha1
kind: Trigger
metadata:
 name: helloaloha
spec:
 filter:
 attributes:

 type: greeting
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1alpha1
 kind: Service
 name: eventingaloha

The type is the CloudEvent type that is mapped to the ce-type HTTP header. A
Trigger can filter by CloudEvent attributes such as type, source, or extension.

64 | Chapter 4: Knative Eventing

http://eventingaloha.myeventing.example.com
http://eventingbonjour.myeventing.example.com

Now create the Trigger for eventingbonjour that will associate the filtered events to a
service:

apiVersion: eventing.knative.dev/v1alpha1
kind: Trigger
metadata:
 name: hellobonjour
spec:
 filter:
 attributes:
 type: greeting
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1alpha1
 kind: Service
 name: eventingbonjour

Verify that your Triggers are ready:

$ kubectl -n chapter-4 create -f trigger-helloaloha.yaml
trigger.eventing.knative.dev/helloaloha created
$ kubectl -n chapter-4 create -f trigger-hellobonjour.yaml
trigger.eventing.knative.dev/hellobonjour created
$ kubectl get triggers
NAME READY BROKER SUBSCRIBER_URI AGE
helloaloha True default http://eventingaloha.chapter-4.svc.cluster.local 24s
hellobonjour True default http://eventingbonjour.chapter-4.svc.cluster.local 48s

The preceding output has been modified for formatting purposes.

Discussion
Pull out the subscriberURI for eventhingaloha:

$ kubectl get trigger helloaloha -o jsonpath={.status.subscriberURI}
http://eventingaloha.chapter-4.svc.cluster.local

Pull out the subscriberURI for eventhingbonjour:

$ kubectl get trigger hellobonjour -o jsonpath={.status.subscriberURI}
http://eventingbonjour.chapter-4.svc.cluster.local

As well as the Broker’s subscriberURI:

$ kubectl get broker default -o jsonpath={.status.address.url}
http://default-broker.chapter-4.svc.cluster.local

4.10 Using Knative Eventing Brokers and Triggers | 65

http://eventingaloha.chapter-4.svc.cluster.local
http://eventingbonjour.chapter-4.svc.cluster.local
http://eventingaloha.chapter-4.svc.cluster.local
http://eventingbonjour.chapter-4.svc.cluster.local
http://default-broker.chapter-4.svc.cluster.local

You should notice that the subscriberURIs are Kubernetes services with the suffix of
chapter-4.svc.cluster.local. This means they can be interacted with from
another pod within the Kubernetes cluster.

Now that you have set up the Brokers and Triggers, you need to send in some test
messages to see the behavior:

First, start streaming the logs for the event consumers:

$ stern eventing -c user-container

Then create a pod for using the curl command:

apiVersion: v1
kind: Pod
metadata:
 labels:
 run: curler
 name: curler
spec:
 containers:
 - name: curler

 image: fedora:29
 tty: true

You can use any image that includes a curl command.

Then exec into the curler pod:

$ kubectl -n chapter-4 apply -f curler.yaml
pod/curler created
$ kubectl -n chapter-4 exec -it curler -- /bin/bash

Using the curler pod’s shell, curl the subcriberURI for eventingaloha:

$ curl -v "http://eventingaloha.chapter-4.svc.cluster.local" \
-X POST \
-H "Ce-Id: say-hello" \
-H "Ce-Specversion: 1.0" \
-H "Ce-Type: aloha" \
-H "Ce-Source: mycurl" \
-H "Content-Type: application/json" \
-d {"key":"from a curl"}

You will then see eventingaloha will scale-up to respond to that event:

$ watch kubectl get pods
NAME READY STATUS AGE
curler 1/1 Running 59s
default-broker-filter-c6654bccf-vxm5m 1/1 Running 11m
default-broker-ingress-7479966dc7-pvtx6 1/1 Running 11m
eventingaloha-1-deployment-6cdc888d9d-9xnnn 2/2 Running 30s

66 | Chapter 4: Knative Eventing

Next, curl the subcriberURI for eventingbonjour:

$ curl -v "http://eventingbonjour.chapter-4.svc.cluster.local" \
-X POST \
-H "Ce-Id: say-hello" \
-H "Ce-Specversion: 1.0" \
-H "Ce-Type: bonjour" \
-H "Ce-Source: mycurl" \
-H "Content-Type: application/json" \
-d {"key":"from a curl"}

And you will see the eventingbonjour pod scale up:

$ watch kubectl get pods
NAME READY STATUS AGE
curler 1/1 Running 82s
default-broker-filter-c6654bccf-vxm5m 1/1 Running 11m
default-broker-ingress-7479966dc7-pvtx6 1/1 Running 11m
eventingaloha-1-deployment-6cdc888d9d-9xnnn 2/2 Running 53s
eventingbonjour-1-deployment-fc7858b5b-s9prj 2/2 Running 5s

Now, trigger both eventingaloha and eventingbonjour by curling the subcriberURI
for the Broker:

$ curl -v "http://default-broker.chapter-4.svc.cluster.local" \
-X POST \
-H "Ce-Id: say-hello" \
-H "Ce-Specversion: 1.0" \
-H "Ce-Type: greeting" \
-H "Ce-Source: mycurl" \
-H "Content-Type: application/json" \
-d {"key":"from a curl"}

“Ce-Type: greeting” is the key to insuring that both aloha and
bonjour respond to this event.

And by watching the chapter-4 namespace, you will see both eventingaloha and
eventingbonjour come to life:

$ watch kubectl get pods
NAME READY STATUS AGE
curler 1/1 Running 3m21s
default-broker-filter-c6654bccf-vxm5m 1/1 Running 13m
default-broker-ingress-7479966dc7-pvtx6 1/1 Running 13m
eventingaloha-1-deployment-6cdc888d9d-nlpm8 2/2 Running 6s
eventingbonjour-1-deployment-fc7858b5b-btdcr 2/2 Running 6s

4.10 Using Knative Eventing Brokers and Triggers | 67

You can experiment by using different types of filters in the Subscription to see how
the different subscribed services respond. Filters may use a CloudEvent attribute
for its criteria.

In this chapter, you have learned about Knative Eventing by understanding Event
Sources, Event Sinks, and Event Channels; connecting Event Sources to Event Sinks;
persisting messages in Event Channels; and filtering messages using Triggers.

In Chapter 6, you will be using filters to categorize events to Sink in and also learn
how to enable Knative for observability, which will help you collect metrics and traces
for real-world scenarios.

See Also
Knative Documentation on Brokers & Triggers

68 | Chapter 4: Knative Eventing

https://oreil.ly/ISXPi

CHAPTER 5

Observability

Observability, the ability to monitor services and examine traces, is a critically impor‐
tant architectural capability for any event-driven distributed system. Knative lever‐
ages Istio as one of its ingress and gateway implementations. The Istio control plane
has the ability to collect the telemetric information. If a few extra components—
Prometheus, Grafana, and Jaeger—are installed in the cluster, then Istio is configured
to send the information to them automatically. Thus, observability in Knative can be
achieved by simply deploying Prometheus, Grafana, and Jaeger into your Kubernetes
cluster.

In this chapter, we will explore how to deploy the observability components, gather
the metrics, and explore the traces of Knative-based applications.

Before You Begin
All the recipes in this chapter will be executed from the directory $BOOK_HOME/
advanced/observability, so change to the recipe directory by running:

$ cd $BOOK_HOME/advanced/observability

The recipes in this chapter will deployed in the chapter-5 namespace, so switch to
the chapter-5 namespace with the following command:

$ kubectl config set-context --current --namespace=chapter-5

5.1 Deploying Prometheus and Grafana
Problem
You want to collect and view your Knative Service metrics and analyze them using a
dashboard.

69

https://istio.io
https://prometheus.io
https://grafana.com
https://www.jaegertracing.io

Solution
Prometheus is used to collect metrics such as memory and CPU usage from your
pods and services. The collected data can then be visualized using Grafana
dashboards.

You can deploy Prometheus and Grafana using the script install-prometheus-
grafana.sh:

$ $BOOK_HOME/install/observability/install-prometheus-grafana.sh

It will take a few minutes for the components to be installed, and you can monitor the
installation progress by watching the pods in the knative-monitoring namespace:

$ watch kubectl -n knative-monitoring get pods
NAME READY STATUS AGE
grafana-5b59764965-nrms9 1/1 Running 84s
kube-state-metrics-5df8bcfdd5-2tksl 1/1 Running 85s
node-exporter-k62nn 2/2 Running 84s
prometheus-system-0 1/1 Running 84s
prometheus-system-1 1/1 Running 84s

Discussion
One of the ways to access the Prometheus dashboard is to use Kubernetes NodePort.
The Prometheus service by default is accessible only within the cluster; hence, you
need to run the following command to expose the Prometheus service using
NodePort:

$ kubectl expose svc -n knative-monitoring prometheus-system-discovery \
 --type=NodePort --name=prometheus-external

Once you have exposed the Prometheus service via NodePort, you can access its
dashboard via your web browser using the command:

$ minikube svc -n knative-monitoring prometheus-external

The command will open the Prometheus dashboard as shown in Figure 5-1 in a new
browser window.

70 | Chapter 5: Observability

Figure 5-1. Prometheus dashboard

To open the Grafana dashboard you can use the NodePort of the Grafana service. To
discover the URL of the service, run the following command:

$ minikube service -n knative-monitoring grafana

This command will open the Grafana dashboard in your browser, as shown in
Figure 5-2.

Figure 5-2. Grafana dashboard

Having successfully installed Prometheus, Knative will not automatically collect and
display the telemetry information gathered using Prometheus. The following recipe
shows how to configure Knative to allow the use of metrics collected via Prometheus.

5.1 Deploying Prometheus and Grafana | 71

5.2 Enable Prometheus for Metrics Collection
Problem
You need to enable the metrics data collection for Knative resources.

Solution
The metrics-related configurations are stored in a ConfigMap called config-
observability in the knative-serving namespace. You need to patch the
ConfigMap to collect metrics from your Knative pods.

Running the following patch command will update the Knative ConfigMap config-
observability to use Prometheus for metrics collection:

$ kubectl -n knative-serving patch cm config-observability \
 --patch "$(cat config-observability-patch.yaml)"

Discussion
You need to verify if the patch has been successfully applied. To verify, run:

$ kubectl -n knative-serving get cm config-observability -oyaml

The verification command will show the following YAML output (output trimmed
for brevity):

1 apiVersion: v1
2 data:

3 metrics.request-metrics-backend-destination: prometheus
4 kind: ConfigMap
5 metadata:
6 name: config-observability
7 namespace: knative-serving

Configures Knative to use Prometheus as the backend for metrics

5.3 Installing Jaeger
Problem
You want to capture and review traces through your the Knative Services, to identify
slowness and other potential issues.

Solution
Jaeger can be used to perform end-to-end distributed tracing by propagating x-b3
headers as part of the HTTP requests.

72 | Chapter 5: Observability

https://www.jaegertracing.io
https://oreil.ly/9V4nF
https://oreil.ly/9V4nF

To install Jaeger you should use its Operator. We have provided a script that auto‐
mates the installation of the operator:

$ $BOOK_HOME/install/observability/install-jaeger.sh

It will take a few minutes for the operator to be installed. You can monitor its pro‐
gress by watching the pods in the observability namespace:

$ watch kubectl -n observability get pods
NAME READY STATUS AGE
jaeger-operator-7b944bbb5b-gc9kp 1/1 Running 64s

Next, deploy the instance of Jaeger with the following script:

$ $BOOK_HOME/install/observability/deploy-jaeger.sh

Jaeger will be deployed in the istio-system namespace. You can watch the status of
the pods in the istio-system namespace with the following command:

$ watch kubectl -n istio-system get pods
NAME READY STATUS AGE
cluster-local-gateway-777dc6949c-qrn8t 1/1 Running 71m
istio-ingressgateway-6dfbbb4d95-nlw42 1/1 Running 71m
istio-pilot-7bc854755d-s9rxk 1/1 Running 71m
jaeger-54bdd77545-j2v8c 1/1 Running 15s

Discussion
Like Prometheus, the Jaeger service is not exposed outside of the cluster. We need to
expose it using the NodePort to be able to access it from the minikube host. Run the
following command to expose Jaeger via NodePort:

$ kubectl expose svc -n istio-system jaeger-query \
 --type=NodePort --name=jaeger-external

Once you have exposed the Jaeger service via NodePort, you can access its dashboard
via your web browser using the command:

$ minikube service -n istio-system jaeger-external

This command will open the Jaeger dashboard as shown in Figure 5-3.

5.3 Installing Jaeger | 73

https://operatorhub.io/operator/jaeger

Figure 5-3. Jaeger dashboard

Now that you have your monitoring and tracing services ready to use, it is time to
deploy and create load on some Knative Services.

5.4 Deploying Observable Test Services
Problem
You want some microservices that will be monitored and traced.

Solution
In this recipe, you will deploy three Knative Services—customer, preference, and
recommendation—and these services will be used in viewing the data collected as part
of Knative observability.

Customer is an edge service that is configured to call preference, and preference
will call recommendation: customer → preference → recommendation.

The customer service is an always-on service, so its minScale is configured to be 1;
on the other hand, the preference service is configured to handle a maximum of 10
concurrent requests only and the recommendation service is left to the default Knative
autoscaling configuration:

74 | Chapter 5: Observability

$ kubectl apply -n chapter-5 \
 -f customer.yaml \
 -f preference.yaml \
 -f recommendation.yaml

Discussion
It will take a few minutes for the services to be deployed. You can watch the pods in
the chapter-5 namespace:

$ watch kubectl get pods
NAME READY STATUS AGE
customer-gdrq8-deployment-6cd46d7c7c-mksx9 2/2 Running 6s
preference-g5g7h-deployment-598696f89f-4j4bl 2/2 Running 6s
recommendation-96dxc-deployment-5df6945587-rnqwl 2/2 Running 6s

Let’s query Knative Serving to see the deployed service URL as shown here:

$ watch kubectl -n chapter-5 get ksvc
NAME URL READY
customer http://customer.chapter-5.svc.example.com True
preference http://preference.chapter-5.svc.cluster.local True
recommendation http://recommendation.chapter-5.svc.cluster.local True

Try running the PromQL: container_memory_rss

{namespace="chapter-5",container_name="user-container"}

in the Prometheus dashboard to see how much resident set size
(RSS)—that is, the nondisk memory such as heap, stack etc.—each
test application container consumes.

5.5 Customizing the kubectl Output Columns
Problem
You may want to customize the kubectl output columns.

Solution
The output in the previous listing was generated using the kubectl output option
custom columns file.

To generate the output as shown in the previous listing, create a text file called csv-
columns.txt with the following content:

NAME URL READY

.metadata.name .status.url .status.conditions[0].status

The column headers that will be shown in the output

5.5 Customizing the kubectl Output Columns | 75

http://customer.chapter-5.svc.example.com
http://preference.chapter-5.svc.cluster.local
http://recommendation.chapter-5.svc.cluster.local
https://oreil.ly/IwaNF
https://oreil.ly/DINCn

The values corresponding to each column. The values can be discovered via
kubectl get ksvc <ksvc-name> -o yaml.

Discussion
In many cases you may want to trim the output columns that are returned by a
kubectl command. This is useful when you want to look into only a small, specific
piece of information from a bigger output.

Let’s take an example where you want to view only the Knative Service URL (Knative
Route) and its READY state from the bigger kubectl get ksvc output. In those cases,
you can use the csv-columns.txt file to trim the output and receive a customized out‐
put.

Before viewing the customized output try running kubectl get ksvc, observe the
output, and then run the following command to appreciate the utility of using cus‐
tom columns:

$ kubectl get ksvc --output=custom-columns-file=csv-columns.txt

You should notice that preference and recommendation have slightly different URLs
than customer. Recipe 5.6 will explain why.

5.6 Restricting Knative Service Visibility
Problem
You want to restrict service visibility and separate services that are to be consumed
outside the cluster versus services that are for internal purposes. In the case of the
provided example services, customer is the edge service and therefore public, but
preference and recommendation are only for invocation inside the cluster.

Solution
Knative Serving provides the label serving.knative.dev/visibility to alert the
Knative Serving controller to only create local routes.

Discussion
By default, Knative Services are exposed as public routes; however, the label
serving.knative.dev/visibility can be applied to the service YAML and results in
a cluster.local route being generated:

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:

76 | Chapter 5: Observability

 name: preference
 labels:

 serving.knative.dev/visibility: "cluster-local"
spec:
 template:
 metadata:
 annotations:
 autoscaling.knative.dev/target: "10"
 spec:
 containers:
 - image: quay.io/rhdevelopers/istio-tutorial-preference:v1
 env:
 - name: "COM_REDHAT_DEVELOPER_DEMOS_CUSTOMER_\
 REST_RECOMMENDATIONSERVICE_MP_REST_URL"
 value: "http://recommendation.knativetutorial.svc.cluster.local"

This label will result in a local route for the ksvc: http://

preference.chapter-5.svc.cluster.local.

When you list your Knative Routes you will see that preference and recommendation
have local routes with the domain name suffix as chapter-5.svc.cluster.local,
while customer has a public address with example.com as the domain name suffix:

$ kubectl -n chapter-5 get rt
NAME URL READY
customer http://customer.chapter-5.example.com True
preference http://preference.chapter-5.svc.cluster.local True
recommendation http://recommendation.chapter-5.svc.cluster.local True

You can call the customer service using the script $BOOK_HOME/bin/call.sh by passing
the parameter customer:

$ $BOOK_HOME/bin/call.sh customer
customer => preference =>
recommendation v1 from recommendation-96dxc-deployment-5df6945587-rnqwl: 1

Grafana Dashboards
The Grafana dashboard provides a list of out-of-the-box dashboards that gather the
required metrics across the entire Knative system and its components.

For the next two recipes you will be exploring only two dashboards, as shown in
Figure 5-4:

• Knative Serving - Scale Debugging
• Knative Serving - Revision HTTP Requests

Grafana Dashboards | 77

http://customer.chapter-5.example.com
http://preference.chapter-5.svc.cluster.local
http://recommendation.chapter-5.svc.cluster.local

Figure 5-4. Grafana dashboards list

Autoscale Debugging
This dashboard allows you to debug the various aspects of Knative autoscaling, such
as:

Revision Pod Counts
This panel provides the metrics around the Knative Service Revisions and their
pod counts: what is actual and what was requested.

Resource Usage
This panel provides the CPU and memory usage of the Knative Service and its
Revisions.

78 | Chapter 5: Observability

Autoscaler Metrics
This panel provides the metrics around autoscaling of a Knative Service, includ‐
ing data points with respect to a Knative Service’s pod counts, concurrency, and
Requests Per Second (RPS).

Activator Metrics
This panel shows how the Knative Serving activator is responding to the scale up
of dormant Knative Services with details on request count and the time it took to
bring the dormant service to life.

5.7 Monitoring Autoscaling Metrics of a Knative Service
Problem
You want to monitor a particular service and find out how it performed during
autoscaling.

Solution
The Knative Serving - Scale Debugging dashboard in Grafana provides insight into a
particular service’s scaling performance.

To simulate the metrics collection, you will run a load test with 50 concurrent
requests for a time period of 10 seconds against the customer service. As the prefer
ence service can handle only 10 concurrent requests (autoscaling.knative.dev/
target: "10"), you will see that preference scales up to handle the extra requests,
while customer and recommendation will be able to handle the load without scaling.
Run the load test by calling the script $BOOK_HOME/bin/load.sh with the customer
parameter:

$ $BOOK_HOME/bin/load.sh customer

Discussion
Analyze the metrics for the preference service and discover how it performed dur‐
ing scaling. You can view the Knative Serving - Scale Debugging dashboard by navi‐
gating to the Grafana dashboard home and then selecting Home → Knative Serving -
Scale Debugging from the list of dashboards.

Figure 5-5 shows the amount of CPU and memory that the preference service and
its latest revision has consumed. In this case it is approximately 1 CPU and 500 MB of
memory.

5.7 Monitoring Autoscaling Metrics of a Knative Service | 79

Fi
gu

re
 5

-5
. R

es
ou

rc
e u

sa
ge

 m
et

ric
s—

Pr
efe

re
nc

e (
la

rg
e f

or
m

at
 ve

rs
io

n)

80 | Chapter 5: Observability

https://oreil.ly/knative-cookbook-figs

The screen depicted in Figure 5-6 displays the total number of pods that were used
when serving the request along with the observed concurrency. Since target concur‐
rency for the preference service is 10, the pod count will be approximately 6 to 7
pods. The observed concurrency is around 7.

The screen depicted in Figure 5-7 displays similar metrics, such as the actual and
requested pod count. Whereas the preference actual pod count tends to be 0 due to
the enabled scale-to-zero for the preference service, the requested pod count has
spiked close to 7 when handling the load.

The screen depicted in Figure 5-8 displays the number of requests received to activate
the preference service distributed by the HTTP response code. It also shows the
time that the activator took in responding to the requests. Based on the load that was
sent, it shows an average of 50 requests with each taking approximately 9 to 11 sec‐
onds to respond.

5.7 Monitoring Autoscaling Metrics of a Knative Service | 81

Fi
gu

re
 5

-6
. A

ut
os

ca
lin

g m
et

ric
s—

Pr
efe

re
nc

e (
la

rg
e f

or
m

at
 ve

rs
io

n)

82 | Chapter 5: Observability

https://oreil.ly/knative-cookbook-figs

Fi
gu

re
 5

-7
. P

od
 co

un
ts—

Pr
efe

re
nc

e (
la

rg
e f

or
m

at
 ve

rs
io

n)

5.7 Monitoring Autoscaling Metrics of a Knative Service | 83

https://oreil.ly/knative-cookbook-figs

Fi
gu

re
 5

-8
. A

ct
iv

at
or

 m
et

ric
s—

Pr
efe

re
nc

e (
la

rg
e f

or
m

at
 ve

rs
io

n)

84 | Chapter 5: Observability

https://oreil.ly/knative-cookbook-figs

5.8 Monitoring HTTP Performance Metrics of a Knative
Service
Problem
You want to measure the end-to-end HTTP performance of a Knative Service, such
as its request volume, response volume, how many failed requests, how many HTTP
5xx responses, etc.

Solution
The Knative Serving - Revision HTTP Requests dashboard provides metrics for each
Knative Service Revision’s HTTP requests. This dashboard has three panels:

Overview
This panel provides HTTP request and response overview with metrics around
Operations per second (Ops) and responses based on the HTTP response code.

Request Volume
This panel provides HTTP request-centric metrics with request volumes classi‐
fied by revision and response codes for each Knative Service and its Revision.

Response Volume
This panel provides HTTP response-centric data with response volumes by
response time and response code for each Knative Service and its Revisions.

Discussion
As customer is an edge service, it will be the ideal service for you to monitor the end-
to-end request and response metrics.

Select “Knative Serving - Revision HTTP Requests” from the list of dashboards in
Grafana home. You will see a screen similar to the one depicted in Figure 5-9, which
has an overview of the customer service requests and responses. It also provides the
metrics around requests alone categorized on request volume by revision and HTTP
response codes.

The request volume–based metrics, e.g., Operations per second (Ops), will have only
one revision of the customer service deployed with its average Ops being approxi‐
mately 1.7. The response code-based metrics are predominantly HTTP 200 with
some HTTP 5xx in the response code, which happened when the service was in a
dormant state and the Knative activator was trying to scale it up.

With the dashboard depicted in Figure 5-10 you will observe percentile distribution
of the customer service responses by revision and HTTP response codes.

5.8 Monitoring HTTP Performance Metrics of a Knative Service | 85

Fi
gu

re
 5

-9
. R

eq
ue

st
Vo

lu
m

e m
et

ric
s—

Cu
sto

m
er

 (l
ar

ge
 fo

rm
at

 ve
rs

io
n)

86 | Chapter 5: Observability

https://oreil.ly/knative-cookbook-figs

Fi
gu

re
 5

-1
0.

 R
es

po
ns

e V
ol

um
e m

et
ric

s—
Cu

sto
m

er
 (l

ar
ge

 fo
rm

at
 ve

rs
io

n)

5.8 Monitoring HTTP Performance Metrics of a Knative Service | 87

https://oreil.ly/knative-cookbook-figs

5.9 Tracing Knative Services with Jaeger
Problem
You want to trace the end-to-end call through a series of Knative Services.

For example: customer → preference → recommendation.

Solution
The Istio istio-ingressgateway automatically adds the x-b3 headers for all the
HTTP requests that pass through it. With the installation and enablement of the
Jaeger component, the Knative Services will generate the trace spans automatically
and those spans can then be viewed in the Jaeger dashboard.

Discussion
For better clarity, it is good to clean up the existing Jaeger traces generated by previ‐
ous load test runs. A simple solution to getting back to a known clean state is to sim‐
ply delete the Jaeger pod in istio-system and let a new pod spin up as Jaeger stores
its cached data in-memory.

You can run the following command to delete the Jaeger pod:

$ JAEGER_POD=$(kubectl -n istio-system get pod \
 -l "app.kubernetes.io/name=jaeger" -o jsonpath={.items[0].metadata.name})
$ kubectl -n istio-system delete pod $JAEGER_POD

It may take a few seconds for the Jaeger pod to come back to life. You can watch the
status of pods in the istio-system namespace to monitor its lifecycle.

Make sure that kubectl proxy is still running and open the Jaeger dashboard in your
web browser.

Run a single call to the customer service using the script $BOOK_HOME/bin/call.sh but
passing the parameter customer to it. The call should return you a response like
customer ⇒ preference ⇒ recommendation v1 from recommendation-96dxc-

deployment-5df6945587-rnqwl: 1.

Use the browser refresh button to refresh the Jaeger dashboard to have the customer
service listed in the Service drop-down, as shown in Figure 5-11.

88 | Chapter 5: Observability

https://oreil.ly/pdASw

Figure 5-11. Jaeger service list

Leaving all the other search options with their defaults, click the Find Traces button
where you will see one trace with eight spans as shown in Figure 5-12.

Clicking the customer span as depicted in Figure 5-11 will the expand the trace to
show the end-to-end details, as shown in Figure 5-12.

You should notice that the initial call to the Knative Service is routed via istio-
ingressgateway, which then:

1. Forwards the call to the customer Knative Service
2. The customer service then calls preference via the cluster-local-gateway
3. Finally, the preference service calls recommendation also via cluster-local-

gateway

Based on the service flow as described earlier, Jaeger provides a critical data point as
shown in Figure 5-13; the traces that show the time spent on each service hop. With
these details, you can discover how transactions are flowing through your system as
well as determine if there are any bottlenecks along the path.

5.9 Tracing Knative Services with Jaeger | 89

Fi
gu

re
 5

-1
2.

 Ja
eg

er
 cu

sto
m

er
 tr

ac
e (

la
rg

e f
or

m
at

 ve
rs

io
n)

90 | Chapter 5: Observability

https://oreil.ly/knative-cookbook-figs

Fi
gu

re
 5

-1
3.

 Ja
eg

er
 cu

sto
m

er
 tr

ac
e e

xp
an

de
d

(la
rg

e f
or

m
at

 ve
rs

io
n)

5.9 Tracing Knative Services with Jaeger | 91

https://oreil.ly/knative-cookbook-figs

The exploration of logging requires a bigger cluster with more
CPU and memory than the simple minikube configuration used in
these recipes. If you have access to a bigger cluster, you should also
review the logging capabilities following the upstream project doc‐
umentation.

You now have a good understanding of configuring metrics and monitoring collec‐
tion using Prometheus, analyzing the metrics via the Grafana dashboard, and identi‐
fying the bottlenecks of your services using the Jaeger trace spans. In the next chapter,
you will learn how to apply Enterprise Integration Patterns using Knative and Apache
Camel-K.

92 | Chapter 5: Observability

https://oreil.ly/CMyUN
https://oreil.ly/CMyUN

CHAPTER 6

Serverless Integration Patterns Using
Apache Camel-K

It is highly recommended that you have reviewed and completed
the recipes from Chapters 3 and 4 of the cookbook before reading
this chapter.
The recipes in this chapter will assume that you are fluent in those
concepts and that you have properly installed those prerequisites.

Within the average large IT organization, it is very rare that you would ever build a
new application that would live in total isolation, one that would be completely
detached from all other old or new systems. Many real-time use cases demand that
the old and new systems share and exchange data.

Apache Camel is an open source framework that helps you integrate systems. Apache
Camel allows the integrated systems to produce and consume data between them. It
provides over 300 components that include integration connectors to sources such as
TCP, ActiveMQ, FTP, and Salesforce.com, which makes it easier to integrate hetero‐
geneous systems. Enterprise Integration Patterns (EIP) provide solutions to many
common integration problems. Apache Camel provides implementations of these
patterns via its rich Domain Specific Language (DSL), thereby making it easier for the
developers to apply the EIP easily.

Apache Camel-K aims at simplifying the programming and deployment model for
Apache Camel integrations. By working with Apache Camel-K, the integration devel‐
opers can now focus on writing their integrations using the Camel DSL in Java, Java‐
Script, Groovy, XML or YAML, without the need to worry about how to package and
deploy them.

93

https://camel.apache.org
https://oreil.ly/2oTmP
https://www.enterpriseintegrationpatterns.com
https://oreil.ly/jEBcN
https://oreil.ly/RPuj-

Camel-K will enable you to craft a Kubernetes-native integration application. It also
leverages serverless capabilities via Knative.

Before You Begin
All the recipes in this chapter will be executed from the directory $BOOK_HOME/
advanced/camel-k, so change to the recipe directory by running:

$ cd $BOOK_HOME/advanced/camel-k

The recipes of this chapter will be deployed in the namespace chapter-6. You need
switch to the chapter-6 namespace:

$ kubectl config set-context --current --namespace=chapter-6

6.1 Installing Camel-K
Problem
You want to install Apache Camel-K in your Kubernetes cluster.

Solution
Download correct the kamel release for your operating system, extract the binary,
and add it to your $PATH. As of the writing of this book, the version of kamel was
1.0.0-RC2; run the following command to verify if are using version 1.0.0-RC2 or
above:

$ kamel version
Camel K Client 1.0.0-RC2

The command-line tool is called kamel while the technology itself
is called Camel-K.

To install Camel-K in your cluster, run the command kamel install --wait:

$ kamel install --wait
platform "camel-k" in phase Creating
platform "camel-k" in phase Ready
Camel K installed in namespace chapter-6

94 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

https://oreil.ly/o_GDr

Discussion
As with other installations in this book, this process will take a few minutes for the
Camel-K pods to be up and running. You can monitor the progress of the installation
by watching the pods in the chapter-6 namespace:

$ watch kubectl -n chapter-6 get pods
NAME READY STATUS RESTARTS AGE
camel-k-operator-84d7896b68-9mfdv 1/1 Running 0 2m7s

The primary responsibility of camel-k-operator is to look for Camel-K integrations
that are deployed using kamel, and to build and deploy them as Kubernetes applica‐
tions. The Camel-K install creates a ConfigMap called camel-k-maven-settings,
which will be used by the Camel-K integrations to download the Apache Camel
Maven artifacts. The next recipe will show you how to modify the Camel-K Maven
settings ConfigMap called camel-k-maven-settings to make the integration builds
run faster.

6.2 Configuring Camel-K to Build Faster
Problem
You want to make your Camel-K builds and deployments faster.

Solution
Camel-K uses Apache Maven to build the integration kits and Camel-K’s related con‐
tainers. The Apache Maven settings for Camel-K are stored in a ConfigMap called
camel-k-maven-settings in the chapter-6 namespace. One of the ways to make the
build faster is by using a Maven repository manager such as Sonatype Nexus, which
helps in caching the Maven artifacts from remote repositories and serves them from
local repositories the subsequent times they are asked to be downloaded.

Edit the ConfigMap using the command:

$ kubectl edit cm camel-k-maven-settings

This command by default opens the ConfigMap YAML in vi, a text editor. We can use
the environment variable KUBE_EDITOR to allow us to edit the YAML with the editor
of our choice. For example, setting export KUBE_EDITOR=code -w will make the
kubectl edit commands to open the Kubernetes resource YAML in VSCode.

Discussion
The following listing shows the Camel-K maven settings configured to use a Sonatype
Nexus repository as its mirror:

6.2 Configuring Camel-K to Build Faster | 95

https://maven.apache.org
https://oreil.ly/-q1l-
https://code.visualstudio.com

apiVersion: v1
data:
 settings.xml: |-
 <?xml version="1.0" encoding="UTF-8"?>
 <settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
https://maven.apache.org/xsd/settings-1.0.0.xsd">
 <localRepository></localRepository>
 <mirrors>
 <mirror>
 <id>central</id>
 <name>central</name>

 <url>http://nexus:8081/nexus/content/groups/public</url>
 <mirrorOf>*</mirrorOf>
 </mirror>
 </mirrors>
 ...
 </settings>
kind: ConfigMap
metadata:
 labels:
 app: camel-k
 name: camel-k-maven-settings
 namespace: chapter-6

This repository address needs to be updated as per your cluster setting. In this
example, the Sonatype Nexus repository manager is installed in the chapter-6
namespace.

If you don’t have a Sonatype Nexus repository, you can deploy one
into the cluster using the deployment $BOOK_HOME/apps/nexus/
app.yaml.

6.3 Writing a Camel-K Integration
Problem
You want to write a very simple integration with Camel-K.

Solution
An integration is an Apache Camel route defined using Camel DSL. The kamel CLI
will help you build and run the Apache Camel integration as a Kubernetes applica‐
tion. The Camel-K Kubernetes operator takes care of performing the necessary back‐
ground tasks such as converting the Camel DSL to Java, downloading the required

96 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

Maven artifacts, building the application, and finally, using those built artifacts to
then build a Linux container image.

In this recipe you will deploy a simple microservice that prints out the text “Welcome
to Camel K” every 10 seconds. If you have worked with Apache Camel before, you
may be familiar with using the Apache Camel DSL with Java and XML, but in this
chapter you will be using the Apache Camel DSL in YAML.

The Apache Camel YAML DSL is still under active development,
but using this DSL will give you a consistent resource definition
across Kubernetes, Knative, and Camel-K.

Let’s analyze your first Camel-K integration before running it. A Camel-K integration
resource is an array of one flow or multiple route definitions. The following listing
shows you a simple timer integration with just one route:

- from:

 uri: "timer:tick"

 parameters:
 period: "10s"

 steps:

 - set-body:
 constant: "Welcome to Apache Camel K"

 - set-header:
 name: ContentType
 simple: text/plain

 - transform:
 simple: "${body.toUpperCase()}"

 - to:
 uri: "log:info?multiline=true&showAll=true"

The Apache Camel producer Uniform Resource Identifier (URI), which in this
case is the timer component.

parameters allows you to specify the configurable properties of the component.
In this case the timer component needs to tick every 10 seconds.

steps defines the flow of your Camel exchange (IN). Each Camel-K integration
should have at least one step defined.

Sets the body of the Camel exchange (OUT), a constant value of “Welcome to
Apache Camel K.”

You can also set headers as part of the step. This sets the ContentType header
with the value text/plain.

6.3 Writing a Camel-K Integration | 97

https://oreil.ly/gQjS4

You can also apply transformations as part of a step. This applies a simple trans‐
formation of converting the exchange OUT body to uppercase.

In the end you send the processed exchange (OUT) to its desired destination;
here we simply log it out.

You can have any number of steps as needed for an integration based on your use
case. In later sections of this chapter you will deploy multistep-based integration
examples.

Navigate to $BOOK_HOME/advanced/camel-k and then run the following command to
deploy your first Camel-K integration:

$ kamel run --dev --dependency camel:log get-started/timed-greeter.yaml
integration "timed-greeter" created
integration "timed-greeter" in phase Initialization
integration "timed-greeter" in phase Building Kit
integration "timed-greeter" in phase Deploying
integration "timed-greeter" in phase Running
...

Discussion
You need to use the kamel CLI to deploy a Camel-K integration. The command starts
the Camel-K integration in development mode with the option --dev. The develop‐
ment mode adds the option to tail the logs from the integration’s Kubernetes pod and
adds support to synchronize the source changes and reload the Apache Camel con‐
text automatically.

Since Apache Camel 3, the entire Apache Camel platform has been modularized, and
the core module does not have all the components that are needed for this integra‐
tion. You can instruct the Camel-K integration to add extra Camel component mod‐
ules (JARs) that you need via the --dependency parameter. In this case you are
adding the camel:log component as part of your integration deployment.

A typical Camel-K integration deployment will take approximately
2–5 minutes, as it involves multiple steps, including:

1. Building an integration kit (camel-k-kit), which builds the
container image with all the required Camel modules down‐
loaded and added to the classpath within the container image.

2. If using Knative, then deploy as a Knative Service.

3. Run the container image as a Kubernetes pod and start the
Camel context.

98 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

$ watch kubectl -n chapter-6 get pods
NAME READY STATUS RESTARTS AGE
camel-k-kit-bnvcv2t88vdk4ri5mdd0 0/1 Completed 0 6m2s
camel-k-kit-bnvcv2t88vdk4ri5mdd0-builder 0/1 Completed 0 6m11s
timed-greeter-cd8b58cdb-dn75q 1/1 Running 0 26s

In the same terminal as the kamel run, you will see the output logging of the Camel-
K integration as shown here:

$ kamel run --dev --dependency camel:log get-started/timed-greeter.yaml
...
[1] 2020-01-13 03:25:28.548 INFO [Camel (camel-k) thread #1 - timer://tick]
info - Exchange[
[1] Id: ID-timed-greeter-57b4d49974-vg859-1578885868551-0-13
[1] ExchangePattern: InOnly
[1] Properties: {CamelCreatedTimestamp=Mon Jan 13 03:25:28 UTC 2020,
CamelExternalRedelivered=false, CamelMessageHistory=[DefaultMessageHistory
[routeId=route1, node=setBody1], DefaultMessageHistory[routeId=route1,
node=setHeader1], DefaultMessageHistory[routeId=route1, node=transform1],
DefaultMessageHistory[routeId=route1, node=to1]], CamelTimerCounter=7,
CamelTimerFiredTime=Mon Jan 13 03:25:28 UTC 2020, CamelTimerName=tick,
CamelTimerPeriod=10000, CamelToEndpoint=log://info?multiline=true&showAll=true}
[1] Headers: {ContentType=text/plain, firedTime=Mon Jan 13 03:25:28 UTC 2020}
[1] BodyType: String
[1] Body: WELCOME TO APACHE CAMEL K
[1]]

Update the timed-greeter.yaml body text to be “Hi Camel K rocks!”
and observe the automatic reloading of the context and the logs
printing the new message.

If you are not using the Maven repository manager or it takes a long time to down‐
load Maven artifacts, your earlier command kamel run --dev .. will report a fail‐
ure. In those cases, run the command kamel get to see the status of the integration.
Once you see the timed-greeter pod running, use kamel log timed-greeter to see
the logs as shown in the earlier listing.

You can use Ctrl-C to stop the running Camel-K integration and automatically termi‐
nate its pods. If you encountered the dev mode failure as described earlier, try to
delete the integration using the command kamel delete timed-greeter.

6.3 Writing a Camel-K Integration | 99

6.4 Running Camel-K Integrations as Knative Serverless
Services
Problem
You want to run a Camel-K integration as a serverless service.

Solution
Any Camel-K integration can be converted into a serverless service using Knative.
For an integration to be deployed as a Knative Service, you need to use Camel-K’s
Knative component.

The Camel-K Knative component provides two consumers: knative:endpoint and
knative:channel. The former is used to deploy the integration as a Knative Service,
while the latter is used to handle events from a Knative Event Channel.

The Knative endpoints can be either a Camel producer or con‐
sumer depending on the context and need.

In this recipe you will deploy a knative:endpoint consumer as part of your integra‐
tion, which will add the serverless capabilities to your Camel-K integration using
Knative.

The following listing shows a simple echoer Knative Camel-K integration that will
simply respond to your Knative Service call with the same body that you sent into it
in uppercase form. If there is no body received, the service will respond with “no
body received”:

- from:

 uri: "knative:endpoint/echoer"
 steps:
 - log:
 message: "Got Message: ${body}"

 - convert-body: "java.lang.String"
 - choice:
 when:
 - simple: "${body} != null && ${body.length} > 0"
 steps:
 - set-body:
 simple: "${body.toUpperCase()}"
 - set-header:
 name: ContentType
 simple: text/plain

100 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

 - log:
 message: "${body}"
 otherwise:
 steps:
 - set-body:
 constant: "no body received"
 - set-header:
 name: ContentType
 simple: text/plain
 - log:
 message: "Otherwise::${body}"

The consumer needs to be a Knative endpoint URI of the form knative:end
point/<your endpoint name>. The name of the Knative Service will be the last
path segment of the URI; in this case, your Knative Service will be called echoer.

You will be converting the incoming data (request body) to java.lang.String as
that will help you in converting to uppercase.

You can run this integration as shown in the following snippet. Notice that you are
now deploying the integration in production mode; i.e., without the --dev option:

$ kamel run --wait --dependency camel:log --dependency camel:bean \
 get-started/echoer.yaml

You can use stern camel-k to monitor the progress of the builder
pod, as well as watch kubectl kamel get and monitor the PHASE
column. In addition, watch kubectl get ksvc checks for the
READY column to become True.

Since the production mode takes some time for the integration to come up, you need
to watch the integration’s logs using the command kamel log <integration name>
in this case, kamel log echoer, and you can get the name of the integration using the
command kamel get.

Discussion
In the integration that you deployed, you applied the Choice EIP when processing the
exchange body. When the body has content, it simply converts the body to
upper-case; otherwise, it returns a canned response of “no body received.” In either
case, the content type header is set to text/plain.

Camel-K defines an integration via Custom Resource Definitions (CRDs), and you
can view those CRDs and the actual integrations via the following commands:

$ kubectl api-resources --api-group=camel.apache.org
NAME SHORTNAMES APIGROUP NAMESPACED KIND

6.4 Running Camel-K Integrations as Knative Serverless Services | 101

builds camel.apache.org true Build
camelcatalogs cc camel.apache.org true CamelCatalog
integrationkits ik camel.apache.org true IntegrationKit
integrationplatforms ip camel.apache.org true IntegrationPlatform
integrations it camel.apache.org true Integration

$ watch kubectl -n chapter-6 get integrations
NAME PHASE KIT REPLICAS
echoer Running kit-bodug9d83u4bmr3uh8jg 1

Once the integration is started, you can check the Knative Service using the com‐
mand kubectl -n chapter-6 get ksvc echoer.

When the service is in a ready state use the call script $BOOK_HOME/bin/call.sh with the
parameter echoer and a request body of “Hello World”:

$ $BOOK_HOME/bin/call.sh echoer 'Hello World'
HELLO WORLD

$ $BOOK_HOME/bin/call.sh echoer ''
no body received

The invocation of a Knative Camel-K integration is a bit different than previous Kna‐
tive test calls. The Knative Camel-K integration service is expecting a POST where
the input data is part of the request body. Therefore, you need a few different ele‐
ments to construct the invocation. The following snippet from $BOOK_HOME/bin/call.sh
shows how a Knative Service call is constructed:

$ NODE_PORT=$(kubectl get svc istio-ingressgateway -n istio-system \

-o jsonpath={.spec.ports[?(@.port==80)].nodePort})

$ IP_ADDRESS="$(minikube ip):$NODE_PORT"

$ HOST_HEADER="Host:echoer.chapter-6.example.com"

$ curl -X POST -H $HOST_HEADER -d "Hello World" $IP_ADDRESS

All Knative traffic should flow through the Istio ingress gateway, and NodePort is
the easiest solution on minikube.

Minikube, which is running as a VM on your local machine, provides a local IP
address (e.g., 192.168.99.100).

The host header can be determined by running kubectl get ksvc echoer. Just
make sure to remove the “http://” prefix.

curl with a POST.

Explore the kamel tool via its help option kamel --help to see the
list of available commands and their respective options.

102 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

6.5 Using Knative Eventing with Camel-K
Problem
You want to leverage Camel-K integration capabilities within Knative Eventing by
deploying the CamelSource event source.

Solution
The CamelSource event source allows you use a Camel-K integration as part of the
Knative Eventing architecture. Simply speaking, you can make the Camel-K integra‐
tion act as a Knative Event Source and send the Camel exchanges (OUT) through a
Knative Event Sink.

Discussion
The CamelSource event source does not come with the default Knative Eventing
installation; therefore, you need to install it from the Knative Eventing contribution
repository.

The following snippet depicts how to deploy the CamelSource into the knative-
sources namespace:

$ kubectl apply \
 -f "https://github.com/knative/eventing-contrib/releases/\
download/v0.12.2/camel.yaml"

You will see a new pod showing up the knative-sources namespace:

$ watch kubectl -n knative-sources get pods
NAME READY STATUS RESTARTS AGE
camel-controller-manager-0 1/1 Running 0 12h

In addition, CamelSource is now part of the API for your Kubernetes cluster:

$ kubectl api-resources --api-group=sources.eventing.knative.dev
NAME APIGROUP NAMESPACED KIND
apiserversources sources.eventing.knative.dev true ApiServerSource
camelsources sources.eventing.knative.dev true CamelSource
containersources sources.eventing.knative.dev true ContainerSource
cronjobsources sources.eventing.knative.dev true CronJobSource
sinkbindings sources.eventing.knative.dev true SinkBinding
kafkasources sources.eventing.knative.dev true KafkaSource

6.5 Using Knative Eventing with Camel-K | 103

https://oreil.ly/nzre1
https://oreil.ly/0QAT_
https://oreil.ly/0QAT_

6.6 Logging and Displaying CloudEvents Messages
Problem
You want to watch the raw CloudEvents (CE) messages that are exchanged between
Knative Eventing Channels and Subscribers.

Solution
In order for you to view the events drained from the CamelSource timed-greeter,
you need to deploy a utility service called event-display. Run the following com‐
mand to deploy the service:

$ kubectl apply \
 -f "https://github.com/knative/eventing-contrib/releases/\
download/v0.12.0/event-display.yaml"

$ watch "kubectl -n chapter-6 get pods \
 -l serving.knative.dev/service=event-display"
NAME URL READY
event-display http://event-display.chapter-6.example.com True

Discussion
The event-display is a Knative Service, which when configured as an event sink will
simply log the raw CloudEvents generated from its Knative Event Source. In the case
of timed-greeter, all the events—i.e., the message “Welcome to Apache Camel-K”
from the timed-greeter CamelSource—will be sent to the event-display service.

6.7 Wiring a CamelSource to a Knative Eventing Sink
Problem
You want to drain the output of a Camel exchange to a Knative Eventing Sink.

Solution
Knative Eventing semantics allows you to link the Event Source to the Event Sink
using the sink block of the Knative Eventing source specification.

As part of this recipe you will deploy the same timed-greeter integration that you
deployed earlier, but this time as a CamelSource. The event source (CamelSource) is
configured to drain the events to the sink event-display. The following listing pro‐
vides the details of CamelSource configuration:

apiVersion: sources.eventing.knative.dev/v1alpha1
kind: CamelSource

104 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

http://event-display.chapter-6.example.com
https://cloudevents.io

metadata:
 name: timed-greeter
spec:

 integration:
 dependencies:
 - camel:log

 source:
 flow:
 from:
 uri: "timer:tick"
 parameters:
 period: "10s"
 steps:
 - set-body:
 constant: "Welcome to Apache Camel-K"
 - set-header:
 name: ContentType
 simple: text/plain
 - transform:
 simple: "${body.toUpperCase()}"
 - log:
 message: "${body}"

 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

The CamelSource is provided by the API sources.eventing.knative.dev. It is
now available as a result of deploying the CamelSource event source.

The CamelSource spec has two main sections: integration and source. The
integration block is used to configure the Camel-K integration–specific proper‐
ties such as dependencies, traits, etc. In this example we add the required depen‐
dencies such as camel:log, which is the dependency that you passed earlier via
the kamel CLI.

The source block is used to define the Camel-K integration definition. The flow
attribute of the source block allows you define the Camel route.

The event sink for messages from the Camel event source. The sink could be
either a Knative Service, Knative Event Channel, or Knative Event Broker. In this
case it is configured to be the event-display Knative Service.

Discussion
You can deploy the CamelSource in the same way you deploy any other Kubernetes
resource. The following listing shows you how:

6.7 Wiring a CamelSource to a Knative Eventing Sink | 105

$ kubectl apply -n chapter-6 -f get-started/timed-greeter-source.yaml
camelsource.sources.eventing.knative.dev/timed-greeter created

It will take a few minutes for the CamelSource to be reconciled and start to emit
greeter events. You can watch the chapter-6 pods to monitor the status of the
deployment.

A successful deployment will show the CamelSource timed-greeter in the ready
state along with its pods in the chapter-6 namespace. You will also see the event-
display pod scaling up to receive the events from timed-greeter:

$ watch kubectl -n chapter-6 get camelsources
NAME READY AGE
timed-greeter True 114s

$ watch kubectl -n chapter-6 get pods
NAME READY STATUS AGE
camel-k-operator-84d7896b68-sgmpk 1/1 Running 2m36s
event-display-dmq4s-deployment-775789b565-fnf2t 2/2 Running 17s
timed-greeter-m4chq-7cbf4ddc66-kxpqd 1/1 Running 86s

Open a new terminal and run the following command to start watching the events
that are being drained into the event-display Knative Service using the command
stern -n chapter-6 event-display -c user-container:

$ stern -n chapter-6 event-display -c user-container
event-... user-container id: ID-timed-greeter-m4chq-7cbf4ddc66-kxpqd-1577072133
461-0-19
event-... user-container time: 2019-12-23T03:37:03.432Z
event-... user-container Data,
event-... user-container WELCOME TO APACHE CAMEL K
event-... user-container ☁ cloudevents.Event
event-... user-container Validation: valid
event-... user-container Context Attributes,
event-... user-container specversion: 0.3
event-... user-container type: org.apache.camel.event
event-... user-container source: camel-source:knativetutorial/timed-greeter

Once you have verified the output, you can delete the CamelSource using the
command:

$ kubectl -n chapter-6 delete camelsource timed-greeter

After a few seconds you will see the event-display Knative Service scaling down to
zero since it no longer receives events via the event source.

106 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

6.8 Applying Enterprise Integration Patterns
with Camel-K
Problem
You want to poll a public REST API, push the data into an Apache Kafka Topic, and
based on the message contents, route particular messages of interest out to an await‐
ing browser window.

Solution
In this recipe you will be applying the pattern called Content Based Router and will
combine several of the recipes in this cookbook into a single cohesive application.

Apache Camel supports numerous Enterprise Integration Patterns (EIPs) out-of-the-
box.

Content Based Router
The Content Based Router examines the message content and routes the message to a
different channel based on the data contained in the message. The routing can be
based on a number of criteria, such as existence of fields, specific field values, etc.
When implementing a Content Based Router, special caution should be taken to
make the routing function easy to maintain as the router can become a point of fre‐
quent maintenance. In more sophisticated integration scenarios, the Content Based
Router can take on the form of a configurable rules engine that computes the destina‐
tion channel based on a set of configurable rules.

This recipe involves a simple data-streaming application that will use Camel-K and
Knative to process the incoming data, where that processed data is pushed out to a
reactive web application via Server-Sent Events (SSE) as shown in Figure 6-1.

6.8 Applying Enterprise Integration Patterns with Camel-K | 107

https://oreil.ly/vBXOi
https://oreil.ly/B2w4O
https://oreil.ly/B2w4O
https://oreil.ly/PTARb

Figure 6-1. Application overview

As you see in Figure 6-1, the application has the following components:

Data Producer
The Camel-K integration application that will produce data simulating the
streaming data by sending the data to Apache Kafka

Data Processor
The Camel-K integration application that will process the streaming data from
Kafka and send the default Knative Eventing Broker

Event Subscriber (Fruits UI)
The Quarkus Java application that will display the processed data from the Data
Processor

Event Trigger
The Knative Event Trigger (Recipe 4.10) that applies a filter on the processed data
to send to the Event Subscriber

The upcoming recipes will deploy these individual components, and then we will test
the integration by wiring them all together.

108 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

https://quarkus.io

Discussion
Now would be a good time to review Chapter 4. Before you start to deploy the ele‐
ments of this recipe, you need to verify the following prerequisites:

1. Apache Kafka my-cluster (Recipe 4.6) is running in the kafka namespace. You
can verify the Kafka cluster using the command kubectl get kafkas -n kafka.
The creation of my-cluster was described in Chapter 4.

2. The chapter-6 namespace is labeled to inject Knative Eventing’s default Broker
filter and ingress deployment:

$ kubectl label namespace chapter-6 knative-eventing-injection=enabled

If the label is set correctly on the chapter-6 namespace, you should see the fol‐
lowing pods corresponding to Knative Eventing’s default Broker’s filter and
ingress:

$ watch kubectl get pods -n chapter-6
NAME READY STATUS AGE
camel-k-operator-5d74595cdf-4v9qz 1/1 Running 3h59m
default-broker-filter-c6654bccf-zkw7s 1/1 Running 59s
default-broker-ingress-857698bc5b-r4zmf 1/1 Running 59s

6.9 Deploying a Data Producer
Problem
You want an application that could act as a streaming data producer.

Solution
In this recipe we will deploy a Knative Camel-K integration called fruits-producer,
which will use a public fruits API to retrieve information about fruits and stream the
data to Apache Kafka. The fruits-producer service retrieves the data from the fruits
API, splits it using the Split EIP, and then sends the data to a Kafka Topic called
fruits.

The following command deploys the fruits-producer Knative Service:

- from:
 uri: "knative:endpoint/fruits-producer"
 steps:
 - set-header:
 name: CamelHttpMethod
 constant: GET

 - to: "http:fruityvice.com/api/fruit/all?bridgeEndpoint=true"
 - split:

 jsonpath: "$.[*]"

6.9 Deploying a Data Producer | 109

http://fruityvice.com
https://oreil.ly/9CyMg

 - marshal:
 json: {}
 - log:
 message: "${body}"

 - to: "kafka:fruits?brokers=my-cluster-kafka-bootstrap.kafka:9092"

Call the external REST API http://fruityvice.com to get the list of fruits to simulate
the data streaming

Apply the Camel Split EIP to split the JSON array to individual records

Send the processed data—i.e., the individual fruit record—as JSON to the Apache
Kafka Topic:

$ kamel -n chapter-6 run \
 --wait \
 --dependency camel:log \
 --dependency camel:jackson \
 --dependency camel:jsonpath \
 eip/fruits-producer.yaml
integration "fruits-producer" created
integration "fruits-producer" in phase Initialization
integration "fruits-producer" in phase Building Kit

The service deployment may take several minutes to become avail‐
able. To monitor the status, run one of the following:

• watch kubectl get pods

• watch kamel get

• watch kubectl get ksvc

$ watch kubectl -n chapter-6 get pods --field-selector=status.phase=Running
NAME READY STATUS AGE
camel-k-operator-5d74595cdf-4v9qz 1/1 Running 4h4m
default-broker-filter-c6654bccf-zkw7s 1/1 Running 5m
default-broker-ingress-857698bc5b-r4zmf 1/1 Running 5m
fruits-producer-nfngm-deployment-759c797c44-d6r52 2/2 Running 70s

$ kubectl -n chapter-6 get ksvc
NAME URL READY
event-display http://event-display.chapter-6.example.com True
fruits-producer http://fruits-producer.chapter-6.example.com True

110 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

http://fruityvice.com
http://event-display.chapter-6.example.com
http://fruits-producer.chapter-6.example.com

Discussion
You can verify if fruits-producer is working by calling the Knative Service using the
script $BOOK_HOME/bin/call.sh with the parameter fruits-producer. To check if the
data has been received in the Kafka Topic, open a new terminal and execute the script
$BOOK_HOME/bin/kafka-consumer.sh with the parameter fruits. If Camel-K integra‐
tion has sent the data correctly, you should see few fruits listed in the JSON data in
the Kafka consumer console:

$ $BOOK_HOME/bin/call.sh fruits-producer ''

$ $BOOK_HOME/bin/kafka-consumer.sh fruits
...
{"genus":"Citrullus","name":"Watermelon","id":25,"family":"Cucurbitaceae",
"order":"Cucurbitales","nutritions":{"carbohydrates":8,"protein":0.6,"fat":0.2,
"calories":30,"sugar":6}}

Since the fruits API returns a static set of fruit data consistently,
you can call it as needed to simulate data streaming and it will
always be the same data.

6.10 Deploying a Data Processor
Problem
You need an integration application—i.e., a data processor—that can process the
streaming data from Apache Kafka.

Solution
In this recipe you will deploy a CamelSource called fruits-processor that can han‐
dle and process the streaming data from the Kafka Topic fruits. The fruits-
processor CamelSource applies the Content Based Router EIP to process the data.
The following listing describes the fruits-processor CamelSource:

apiVersion: sources.eventing.knative.dev/v1alpha1
kind: CamelSource
metadata:
 name: fruits-processor
spec:
 source:
 integration:
 dependencies:
 - camel:log
 - camel:kafka
 - camel:jackson

6.10 Deploying a Data Processor | 111

 - camel:bean
 flow:
 from:

 uri: "kafka:fruits?brokers=my-cluster-kafka-bootstrap.kafka:9092"
 steps:
 - log:
 message: "Received Body ${body}"
 - unmarshal:

 json: {}

 - choice:
 when:
 - simple: "${body[nutritions][sugar]} <= 5"
 steps:
 - remove-headers: "*"
 - marshal:
 json: {}

 - set-header:
 name: ce-type
 constant: low-sugar
 - set-header:
 name: fruit-sugar-level
 constant: low
 - to: "log:low?showAll=true&multiline=true"
 - simple: "${body[nutritions][sugar]} > 5 || \
 ${body[nutritions][sugar]} <= 10"
 steps:
 - remove-headers: "*"
 - marshal:
 json: {}
 - set-header:
 name: ce-type
 constant: medium-sugar
 - set-header:
 name: fruit-sugar-level
 constant: medium
 - to: "log:medium?showAll=true&multiline=true"
 otherwise:
 steps:
 - remove-headers: "*"
 - marshal:
 json: {}
 - set-header:
 name: ce-type
 constant: high-sugar
 - set-header:
 name: fruit-sugar-level
 constant: high
 - to: "log:high?showAll=true&multiline=true"

 sink:
 ref:
 apiVersion: eventing.knative.dev/v1alpha1

112 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

 kind: Broker
 name: default

The Camel route connects to the Apache Kakfa Broker and the topic fruits.

Once the data is received, it is transformed into a JSON payload.

The Content Based Router pattern is using the Choice EIP. In the data processing
you classify the fruits as low (sugar <= 5), medium (sugar between 5 and 10), and
high (sugar > 10) based on the sugar level present in their nutrition data.

Based on the data classification you will be setting the CloudEvents type header
to be low-sugar, medium-sugar, and high-sugar. This header is used as one of
the filter attributes in the Knative Eventing Trigger.

The last step is to send the processed data to the Knative Eventing Broker named
default:

$ kubectl apply -n chapter-6 -f eip/fruits-processor.yaml

Discussion
As the Camel-K controller takes a few minutes to deploy the CamelSource, you can
watch the pods of the chapter-6 namespace for its status:

$ watch kubectl -n chapter-6 get pods --field-selector=status.phase=Running
NAME READY STATUS AGE
camel-k-operator-5d74595cdf-4v9qz 1/1 Running 4h17m
default-broker-filter-c6654bccf-zkw7s 1/1 Running 18m
default-broker-ingress-857698bc5b-r4zmf 1/1 Running 18m
fruits-processor-h45f7-6fdfd74cf9-nmfkn 1/1 Running 29s

$ watch kubectl get -n chapter-6 camelsources
NAME READY REASON AGE
fruits-processor True 2m22s

6.11 Deploying an Event Subscriber
Problem
You want to have a web application that can display the processed data.

Solution
In this recipe we will deploy a reactive web application called fruit-events-display.
It is a Quarkus Java application that will update the UI (reactively) as and when it
receives the processed data from the Knative Eventing backend.

6.11 Deploying an Event Subscriber | 113

https://cloudevents.io
https://oreil.ly/9Uj09
https://quarkus.io

You can deploy the fruit-events-display application using the command:

$ kubectl apply -n chapter-6 \
 -f $BOOK_HOME/install/utils/fruit-events-display.yaml

Verify if the fruit-events-display application is up and running:

$ watch kubectl -n chapter-6 get pods --field-selector=status.phase=Running
NAME READY STATUS AGE
camel-k-operator-5d74595cdf-4v9qz 1/1 Running 4h21m
default-broker-filter-c6654bccf-zkw7s 1/1 Running 22m
default-broker-ingress-857698bc5b-r4zmf 1/1 Running 22m
fruit-events-display-8d47bc98f-6r7zt 1/1 Running 15s
fruits-processor-h45f7-6fdfd74cf9-nmfkn 1/1 Running 4m12s

Discussion
Because the web application will refresh its UI as and when it receives the processed
data, you need you open the web application in your browser. Run the following
command to open the fruit-events-display web application in your browser as
shown in Figure 6-2:

$ minikube -n chapter-6 service fruit-events-display

Figure 6-2. Fruit-events-display web application

Figure 6-2 depicts the fruit-events-display application with an empty list because
there is one more step. The next recipe will explain how to make the fruit-events-
display refresh itself by reacting to the data processed by fruits-processor.

6.12 Filtering Data with Knative Eventing
Problem
You may want to filter the Knative Eventing data before dispatching it to the
Subscriber.

114 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

Solution
In this recipe you will deploy a Knative Event Trigger called fruits-trigger. The
Trigger consumes the events from the Knative Event Broker named default, and
when the fruit event is received it will dispatch the events to the Subscriber—that is,
fruit-events-display service:

apiVersion: eventing.knative.dev/v1alpha1
kind: Trigger
metadata:
 name: sugary-fruits
spec:

 broker: default

 filter:
 attributes:
 type: low-sugar

 subscriber:
 ref:
 apiVersion: v1
 kind: Service
 name: fruit-events-display

The Knative Event Broker that this Trigger listens to for Knative events. Events
originate from the CamelSource called fruits-processor and are sent to the
Knative Eventing Broker named default.

The filter attribute restricts the events that fruit-events-display will receive.
In this example, it is configured to filter the events for the type low-sugar. You
could also use the other classifications of fruits such as medium-sugar or high-
sugar.

Set the subscriber as the fruit-events-display Kubernetes service to receive
the filtered event data.

You can deploy the Knative Event Trigger using the following command:

$ kubectl apply -n chapter-6 -f eip/sugary-fruits.yaml

Discussion
You can check the status of the Trigger using the command kubectl -n chapter-6
get triggers, which should return one Trigger called sugary-fruits with a ready
state as shown in the following code. As the Trigger will dispatch its filtered event to
fruit-events-display, the Subscriber URI of the Trigger will be that of fruit-
events-display service:

6.12 Filtering Data with Knative Eventing | 115

$ kubectl -n chapter-6 get triggers
NAME READY BROKER
sugary-fruits True default
SUBSCRIBER_URI
http://fruits-events-display.chapter-6.svc.cluster.local/

Now you have all the needed components to check the end-to-end flow of the stream‐
ing data pipeline. To verify the data flow and processing, call the fruits-producer
service using the script $BOOK_HOME/bin/call.sh with the parameters fruits-producer
and '':

$ $BOOK_HOME/bin/call.sh fruits-producer ''

Assuming everything worked well, you should see the low-sugar fruits listed in the
fruits-event-display as shown in Figure 6-3.

Figure 6-3. Fruit events

Now that you have a basic understanding of Apache Camel-K and how to use it to
build serverless integrations, we recommend that you visit the Apache Camel and
Apache Camel-K project repositories to explore more examples.

116 | Chapter 6: Serverless Integration Patterns Using Apache Camel-K

http://fruits-events-display.chapter-6.svc.cluster.local/
https://oreil.ly/vaLkg
https://oreil.ly/iX9EQ

CHAPTER 7

Knative on OpenShift

OpenShift is Red Hat’s distribution of Kubernetes for building and hosting
enterprise-grade cloud native applications. OpenShift enables enterprises to embark
upon their hybrid cloud journey by providing a unified developer experience as well
as a comprehensive and rich operator experience irrespective of the underlying cloud
platform. At its core, OpenShift itself is implemented as a series of Kubernetes Cus‐
tom Resource Definitions (CRDs) and Operators.

Kubernetes Operators are software extensions that allow you to manage the deploy‐
ment of Kubernetes applications and services. Operators not only provide automated
installation, but can also manage the complete lifecycle of the software including
upgrades and monitoring. Operators themselves are managed by the Operator Lifecy‐
cle Manager.

OperatorHub.io provides a place to share and discover Operators that have been con‐
tributed by the Kubernetes community, such as Apache Kafka, Redis, Jenkins, and
many others.

This chapter is aimed at OpenShift developers who want to build and deploy server‐
less applications on OpenShift. The recipes in this chapter will help these developers
get Knative installed and configured on OpenShift using the Operators. You will see
that Knative service deployment is going to be similar to what you did with vanilla
Kubernetes.

117

https://openshift.com
https://oreil.ly/xMFrb
https://oreil.ly/rXBqG
https://oreil.ly/rXBqG
https://operatorhub.io
https://oreil.ly/EIc6c
https://oreil.ly/Evcko
https://oreil.ly/C7ORZ

7.1 Installing Knative Serving
Problem
You want to install Knative Serving on OpenShift.

Solution
Knative support for OpenShift (aka OpenShift Serverless) is available only from
OpenShift v4. To install Knative on OpenShift, you will need to have an OpenShift v4
cluster and a user with cluster administrative privileges.

The fastest way to have your own OpenShift cluster is to choose your infrastructure
provider from try.openshift.com as shown in Figure 7-1 and follow the on-screen
instructions to get your OpenShift cluster provisioned in less than thirty minutes.

You can install Knative Serving on OpenShift using the OpenShift Serverless
Operator.

The creation of the OpenShift cluster itself is beyond the scope of
this book; however, if you are new to OpenShift, make sure to
review the relevant documentation, especially the points related to
how to configure your AWS, Azure, or GCP account. You can cre‐
ate a free Red Hat Developer account to access try.openshift.com,
and once your AWS/Azure/GCP account is correctly configured,
cluster creation is simply a matter of answering a few questions:

openshift-install --dir=myawscluster create cluster
? SSH Public Key /Users/developer/.ssh/ocp4aws.pub
? Platform aws
? Region eu-west-1
? Base Domain myroute53domain.com
? Cluster Name aws
? Pull Secret [? for help] *******

118 | Chapter 7: Knative on OpenShift

https://try.openshift.com
https://oreil.ly/zHEn6
https://oreil.ly/BsZ1z
https://oreil.ly/ZIs7L
https://developers.redhat.com/register
https://try.openshift.com

Fi
gu

re
 7

-1
. Th

e O
pe

nS
hi

ft
in

sta
lla

tio
n

pa
ge

 (l
ar

ge
 fo

rm
at

 ve
rs

io
n)

7.1 Installing Knative Serving | 119

https://try.openshift.com
https://oreil.ly/knative-cookbook-figs

Discussion
Once you have your cluster ready, you also need to download the latest OpenShift cli‐
ent (oc). oc is analogous to kubectl, and it allows you to interact and perform vari‐
ous operations on an OpenShift cluster. You can download oc from the OpenShift
public mirror, unzip it, and add it to your $PATH. You can then verify the oc version
using the command oc version as shown in the following snippet:

$ oc version
Client Version: v4.4.0
Server Version: 4.2.10
Kubernetes Version: v1.14.6+17b1cc6

At the time of writing, the versions listed here were the latest for
the OpenShift client and server versions. You can use 4.2 or above
for the recipes in this chapter.

The OpenShift Administrator Console has the OperatorHub integrated (Figure 7-2)
directly into it out-of-the-box. This user interface (UI) enables you to install the soft‐
ware infrastructure that you require without leaving the browser and with just few
button clicks.

You can install Knative Serving and Eventing on OpenShift using their respective
Operators from the OperatorHub. There are two ways to get the Knative Operators
installed:

• Using the OperatorHub UI via the OpenShift Administrator Console
• Using the oc command-line tool, as Operators are nothing but sets of Kubernetes

manifests that can be installed using oc apply -f <your manifest file>

For the recipes in this chapter you will be using the UI-based approach. If you are
interested in the CLI–based approach, check out the Knative Tutorial, which has the
instructions to install the Operators using the oc tool.

The OpenShift Serverless Operator (aka Knative Serving component) installs an Istio
ingress gateway and Istio pilot in a namespace called knative-serving-ingress,
before installing the Knative Serving core components:

1. Select the OpenShift Serverless Operator from the OperatorHub (Figure 7-3).

120 | Chapter 7: Knative on OpenShift

https://oreil.ly/DuOOq
https://oreil.ly/DuOOq
https://bit.ly/knative-tutorial

Fi
gu

re
 7

-2
. O

pe
ra

to
rH

ub
 (l

ar
ge

 fo
rm

at
 ve

rs
io

n)

7.1 Installing Knative Serving | 121

https://oreil.ly/knative-cookbook-figs

Fi
gu

re
 7

-3
. S

ele
ct

in
g O

pe
nS

hi
ft

Se
rv

er
les

s O
pe

ra
to

r (
la

rg
e f

or
m

at
 ve

rs
io

n)

122 | Chapter 7: Knative on OpenShift

https://oreil.ly/knative-cookbook-figs

2. Click the Install button to start the Knative Serving installation onto the Open‐
Shift cluster.

3. Leaving all the options with default values as shown in Figure 7-4, click the Sub‐
scribe button.

It will take a few minutes for the Operator to be available. A successful install is
shown in Figure 7-5.

You can monitor the progress of the Operator installations using the watch com‐
mand, looking for Succeeded with the following command (modified to fit within the
printed page-width requirements):

$ watch oc get csv
NAME DISPLAY VERSION PHASE
elasticsearch-operator.4.2 Elasticsearch Operator 4.2 Succeeded
jaeger-operator.v1.13.1 Jaeger Operator 1.13.1 Succeeded
kiali-operator.v1.0.9 Kiali Operator 1.0.9 Succeeded
serverless-operator.v1.3.0 OpenShift Serverless Operator 1.3.0 Succeeded
servicemeshoperator.v1.0.4 Red Hat OpenShift Service Mesh 1.0.4 Succeeded

The Serverless Operator (serverless-operator) installs not only itself but also its
dependencies. In this case, Knative has a dependency on Istio (servicemesh
operator) and Istio has a dependency on the Jaeger, Kiali, and Elasticsearch
operators.

Now that you have the Serverless Operator installed, you still need to install Knative
Serving itself. Create a new project called knative-serving as shown in Figure 7-6.

The installation of the OpenShift Serverless Operator in all namespaces (which is the
default and recommended option) will cause the Operator to be copied into the
knative-serving namespace (Figure 7-7) automatically. Wait a few minutes as this
process may take some time.

Wait for the Operators to be copied before proceeding to the next
steps.

7.1 Installing Knative Serving | 123

Fi
gu

re
 7

-4
. I

ns
ta

ll
Se

rv
er

les
s O

pe
ra

to
r (

la
rg

e f
or

m
at

 ve
rs

io
n)

124 | Chapter 7: Knative on OpenShift

https://oreil.ly/knative-cookbook-figs

Fi
gu

re
 7

-5
. O

pe
ra

to
rs

 in
sta

lli
ng

 (l
ar

ge
 fo

rm
at

 ve
rs

io
n)

7.1 Installing Knative Serving | 125

https://oreil.ly/knative-cookbook-figs

Fi
gu

re
 7

-6
. K

na
tiv

e S
er

vi
ng

 p
ro

jec
t (

la
rg

e f
or

m
at

 ve
rs

io
n)

126 | Chapter 7: Knative on OpenShift

https://oreil.ly/knative-cookbook-figs

Fi
gu

re
 7

-7
. O

pe
ra

to
rs

 co
py

in
g (

la
rg

e f
or

m
at

 ve
rs

io
n)

7.1 Installing Knative Serving | 127

https://oreil.ly/knative-cookbook-figs

Click the Knative Serving hyperlink from the Provided APIs column as shown in
Figure 7-7.

Click the Create Knative Serving button as shown in Figure 7-8, take the default set‐
tings, and click Create as shown in Figure 7-9 to start the installation of the Knative
Serving components.

It will take a few minutes for the installation to complete. You can watch the status of
the pods on the namespace knative-serving with the following command:

$ watch oc get pods -n knative-serving
NAME READY STATUS AGE
activator-947bd7448-j6r6d 1/1 Running 2m52s
autoscaler-57668c89b7-hsnlm 1/1 Running 2m51s
autoscaler-hpa-9bf98ff7b-jhs6b 1/1 Running 2m52s
controller-649c9f8d97-j9966 1/1 Running 2m47s
networking-istio-6fdb7457fd-mdwpw 1/1 Running 2m44s
webhook-85484bbfc4-bqpl8 1/1 Running 2m46s

You can also view the list of pods from the Workloads → Pods
menu in the OpenShift Administrator Console.

128 | Chapter 7: Knative on OpenShift

Fi
gu

re
 7

-8
. C

re
at

e K
na

tiv
e S

er
vi

ng
 su

bs
cr

ip
tio

n
(la

rg
e f

or
m

at
 ve

rs
io

n)

7.1 Installing Knative Serving | 129

https://oreil.ly/knative-cookbook-figs

Fi
gu

re
 7

-9
. D

ep
lo

y K
na

tiv
e S

er
vi

ng
 (l

ar
ge

 fo
rm

at
 ve

rs
io

n)

130 | Chapter 7: Knative on OpenShift

https://oreil.ly/knative-cookbook-figs

7.2 Deploying a Knative Service
Problem
You want to deploy a Knative Service on OpenShift.

Solution
There are two ways to deploy a Knative Service on OpenShift:

• The same method as a vanilla Kubernetes cluster using oc apply -f

service.yaml

• The Developer Console method

Discussion
You can deploy Knative Service in OpenShift using one of the two methods:

• CLI method
• Developer Console method

CLI method

Deploy the same greeter service that has been used in the earlier chapters of this
cookbook with the following steps:

1. Create a new OpenShift project called chapter-7:
$ oc new-project chapter-7

2. Navigate to the $BOOK_HOME/basics directory and run the following command:
$ oc apply -n chapter-7 -f service.yaml

The first deployment of the service will take some time as the container images need
to be downloaded to your cluster. You can check the status of pods in the chapter-7
namespace:

$ watch oc -n chapter-7 get pods
NAME READY STATUS
greeter-v1-deployment-5749cc98fc-gs6zr 2/2 Running

This is a Knative Serving Service and it might have disappeared
while you were busy elsewhere as it was automatically scaled-to-
zero. You can also use watch oc get ksvc to monitor the deploy‐
ment status of greeter.

7.2 Deploying a Knative Service | 131

Developer console method
The Developer Console method is behind +Add menu item as shown in Figure 7-10.
Select the Container Image option.

Figure 7-10. Click the +Add menu and select Container Image

132 | Chapter 7: Knative on OpenShift

Enter the name of a container image that is known to deploy well on OpenShift, such
as openshift/hello-openshift, and click the magnifying glass icon as shown in
Figure 7-11.

Figure 7-11. Enter the Image Name openshift/hello-openshift and click the magni‐
fying glass

7.2 Deploying a Knative Service | 133

Scroll down the screen until you see “Enable scaling to zero when idle,” and check the
box as shown in Figure 7-12.

Figure 7-12. Enable scaling to zero when idle

134 | Chapter 7: Knative on OpenShift

Also make sure to check the checkbox for “Create a route to the application” and then
click the Create button. Wait a few moments for the container image to be downloa‐
ded into your cluster, and your Knative service will come to life and be visible inside
the OpenShift Developer Console’s Topology view, as shown in Figure 7-13.

Figure 7-13. Topology view

7.3 Verifying and Invoking a Knative Service
Problem
You want to check and invoke the Knative Service’s route once it becomes available.

Solution
You need to watch for the Knative route’s readiness state using the oc command.

Discussion
Each Knative route creates a Knative ingress, which might not be ready immediately
after the service is deployed.

7.3 Verifying and Invoking a Knative Service | 135

When the service is deployed, the command oc -n chapter-7 get rt greeter will
return a response as shown in following listing. IngressNotConfigured under
REASON means the Knative ingress for the route is still being created and configured.

$ watch oc -n chapter-7 get rt
NAME URL READY
greeter http://greeter.knativetutorial.apps.azr.workspace7.org Unknown
REASON
IngressNotConfigured

Wait until the route READY status is True before using the route in your service calls:

$ oc -n chapter-7 rt
NAME URL READY
greeter http://greeter.knativetutorial.apps.azr.workspace7.org True
REASON

You can now invoke the service using the route URL http://greeter.knativetuto
rial.apps.azr.workspace7.org either in your browser or from the CLI using curl.
A successful invocation will have response like Hi greeter => '9861675f8845' : 1
as seen in the following:

$ curl http://greeter.knativetutorial.apps.azr.workspace7.org
Hi greeter => 9861675f8845 : 1

If you receive the message Application is not available, that is an indicator that
your Knative Serving Service did not deploy successfully. To learn more, use the fol‐
lowing command:

$ oc get ksvc
NAME URL READY
greeter http://greeter.knativetutorial.apps.azr.workspace7.org False
REASON
RevisionMissing

RevisionMissing could mean that the pod was unable to schedule within the cluster.
Check the cluster events stream with the following command and look for the telltale
sign of FailedScheduling:

$ *oc get events --sort-by=.metadata.creationTimestamp*
...
8m8s Warning FailedScheduling pod/greeter-v1-deployment-5db4d86bc-
rxw8l 0/6 nodes are available: 3 Insufficient cpu, 3 node(s) had taints that
the pod didn't tolerate.

The default worker node size via try.openshift.com on AWS in particular is very
small. The quick solution is to simply increase your worker node pool via the Open‐
Shift Administrator Console.

136 | Chapter 7: Knative on OpenShift

http://greeter.knativetutorial.apps.azr.workspace7.org
http://greeter.knativetutorial.apps.azr.workspace7.org
http://greeter.knativetutorial.apps.azr.workspace7.org
http://greeter.knativetutorial.apps.azr.workspace7.org

The Administrator → Compute → Machine Sets option in the
OpenShift Administrator Console will allow you to simply point
and click to add a new worker node. This process can take a few
minutes, but once the node joins the cluster you can then delete
and re-add the Knative Service.

Other possible deployment issues might simply be a container image that is not
downloadable to your cluster, and oc get events is very helpful in terms of debug‐
ging various situations.

You have successfully installed Knative Serving in OpenShift, deployed your first
Knative Service, and called that service. You can continue your learning journey by
attempting other recipes from this cookbook with your OpenShift cluster.

7.3 Verifying and Invoking a Knative Service | 137

Index

Symbols
12factor.net, 19

A
Activator Metrics panel (autoscale debugging

dashboard), 79
Ambassador gateway, 8
Apache Camel

about, 93
repository, 116

Apache Camel-K, 93-116
applying Enterprise Integration Patterns

with, 107-109
configuring for speed, 95
installing, 94
project repository, 116
running integrations as Knative serverless

services, 100-102
serverless integration patterns using, 93-116
using Knative Eventing with, 103
writing an integration, 96-99

Apache Kafka
about, 44, 109, 117
deploying cluster, 50-53
Knative Eventing and autoscaling with, 56
using Channel as default Knative Channel,

58
Apache Maven, 95
ApiServerSource, 46
apiVersion, 20
applying

blue-green deployment pattern, 27-29
Canary release pattern, 29-31

Enterprise Integration Patterns with Apache
Camel-K, 107-109

autoscale debugging dashboard, 78
Autoscaler Metrics panel (autoscale debugging

dashboard), 79
autoscaling

configuring Knative Services for, 34
Knative Services, 33-42
monitoring metrics of Knative Service,

79-84
with Apacke Kafka and Knative Eventing,

56
AWS account, 118
Azure account, 118

B
blue-green deployment pattern, applying, 27-29
Brokers, 44, 47, 63-68

C
CamelSource, wiring to Knative Eventing Sink,

104-106
Canary release pattern, applying, 29-31
CE (see CloudEvents (CE))
Channels

about, 44, 47
configuring, 58
using, 59-63
using Apache Kafka Channel as default

Knative, 58
Choice EIP, 101, 113
CLI method, 131
CLI tools, 1
CloudEvent GitHub repository, 48

139

CloudEvent SDK, 48
CloudEvents (CE)

about, 43, 44, 47
displaying messages, 104
logging messages, 104

cold start latency, 39-42
concurrency metric, 33
config-observability, 72
ConfigMap, 6, 34, 72
configuring

Apache Camel-K for speed, 95
Channels, 58
container registry aliases, 6-8
Knative Service to handle request spikes,

37-39
Knative Services for autoscaling, 34

connecting sources to services, 49
container environment, verifying, 12-15
container registry aliases, configuring, 6-8
ContainerSource, 46
Content Based Router, 107
Contour gateway, 8
contribution repository, 103
controller infrastructure component, 11
cpu metric, 33
CPUS environment variable, 4
CRDs (Custom Resource Definitions), 9, 10,

101, 117
CronJobSource, 46, 49
curl command, 23, 66
custom columns file, 75
Custom Resource Definitions (CRDs), 9, 10,

101, 117
customer service, 74
customizing kubectl output columns, 75

D
daemonset, 6
dashboards

autoscale debugging, 78
Grafana, 77
Knative Serving - Revision HTTP Requests,

85
data filtering, with Knative Eventing, 114
data processor, 108, 111-113
data producer, 108, 109-111
deploying

Apache Kafka cluster, 50-53
data processor, 111-113

data producer, 109-111
event subscribers, 113
Grafana, 69-71
Knative Eventing Service, 47-49
Knative Service, 131-135
Knative Serving, 19-23
observable test services, 74
Prometheus, 69-71
Sonatype Nexus, 96

Developer Console method, 131
displaying CloudEvents (CE) messages, 104
distributing traffic between Knative Service

revisions, 26
docker tool, 1
Domain Specific Language (DSL), 93
Durability, as feature of messaging-based archi‐

tecture, 58

E
enabling Prometheus for metrics collection, 72
Enterprise Integration Patterns (EIP), 93,

107-109
Event Subscriber (Fruits UI), 108
event trigger, 108
events

Apache Kafka, 53-56
deploying subscribers, 113
producing with eventing sources, 45
receiving with Knative Eventing Sinks, 46

F
filter attribute, 115
filters, 68, 114-116
Function as a Service (FaaS), 1

G
GCP account, 118
GCP PubSub, 44, 58
git tool, 1
Gloo gateway, 8
Grafana

about, 69
dashboards, 77
deploying, 69-71

greeter serice, 23

H
helm tool, 1, 3

140 | Index

hey tool, 1, 3
Horizontal Pod Autoscaler (HPA), 33
Host header, 22
HTTP performance metrics, monitoring of

Knative Service, 85
HTTP POST, 47
httpie tool, 1, 3

I
In-Memory, 44
InMemory Channel (IMC), 58
installing

Apache Camel-K, 94
Istio, 8
Jaeger, 72-74
Knative, 10-12
Knative Serving, 118-128
Kubernetes container registry, 5
required tools, 1-4

integration connectors, 93
internal Kubernetes container registry, instal‐

ling, 5
invoking Knative Service, 135-137
Istio, 8, 69

J
Jaeger

about, 69
installing, 72-74
tracing Knative Services with, 88-92

Jenkins, 117

K
Kafka Spammer application, 57
Kafka Topic, 52, 59
kamel tool, 94, 102
kind, 20
Knative

getting started, 1-15
installing, 10-12
origin of, vii

Knative Channels (see Channels)
Knative Configuration, 17, 25
Knative Event Source, 103
Knative Eventing, 43-68

about, 10
autoscaling with Apacke Kafka and, 56
Brokers, 63-68

connecting sources to services, 49
deploying Apache Kafka cluster, 50-53
deploying services, 47-49
filtering data with, 114-116
producing events with eventing sources, 45
receiving events with Knative Eventing

Sinks, 46
sourcing Apache Kafka events with, 53-56
Triggers, 63-68
usage patterns, 43-45
using Kafka Channel as default Knative

Channel, 58
using Knative Channels, 59-63
using subscriptions, 59-63
using with Apache Camel-K, 103

Knative Eventing Service, 47-49
Knative Eventing Sink, 46, 104-106
Knative Eventing Sources, 45, 49
Knative Horizontal Pod Autoscaler (KPA), 33
Knative Revision, 18
Knative Route, 18, 25, 77
Knative Service

autoscaling, 33-42
autoscaling metrics of, 79-84
cold start latency, 39-42
configuring for autoscaling, 34
configuring to handle request spikes, 37-39
deploying, 131-135
invoking, 135-137
monitoring HTTP performance metrics of,

85
observing scale-to-zero, 35
restricting visibility of, 76-81
running Apache Camel-K integrations as

serverless servers, 100-102
tracing with Jaeger, 88-92
verifying, 135-137

Knative Serving, 17-31
about, 8, 10, 17
applying blue-green deployment pattern,

27-29
applying Canary release pattern, 29-31
deploying, 19-23
deployment model, 17-19
distributing traffic between revisions, 26
installing, 118-128
updating configurations, 23-26

Knative Serving - Revision HTTP Requests
dashboard, 85

Index | 141

Knative Serving Service Custom Resource
(ksvc), 18

Knative Tutorial, 120
knative:channel, 100
knative:endpoint, 100
KPA (Knative Horizontal Pod Autoscaler), 33
ksvc (Knative Serving Service Custom

Resource), 18
kubectl command, 14, 34, 76
kubectl output columns, customizing, 75
kubectl tool, 1, 3
kubectx tool, 1, 3
kubens tool, 1
Kubernetes

about, vii
creating namespaces, 13
resources, querying, 14-15

Kubernetes Cluster, 4
Kubernetes NodePort, 70
Kubernetes PodSpec, 20

L
liveness probe, 21
load parameter, 39
logging, 92, 104

M
maxScale, 39
MEMORY environment variable, 4
minikube, 4
minScale, 39
monitoring

autoscaling metrics of Knative Service,
79-84

HTTP performance metrics of Knative Ser‐
vice, 85

N
namespaces, 13
Neural Autonomic Transport System (NATS),

58
NodePort (Kubernetes), 70

O
observability, 69-92

about, 69
customizing kubectl output columns, 75
deploying Grafana, 69-71

deploying observable test services, 74
deploying Prometheus, 69-71
enabling Prometheus for metrics collection,

72
Grafana dashboards, 77
installing Jaeger, 72-74
monitoring autoscaling metrics of Knative

Service, 79-84
monitoring HTTP performance metrics of

Knative Service, 85
restricting Knative Service visibility, 76-81
tracing Knative Services with Jaeger, 88-92

observable test services, deploying, 74
observing scale-to-zero, 35
oc command-line tool, 120
OpenShift, 117-137

about, 117
Administrator Console, 120, 128, 137
deploying Knative Service, 131-135
Developer Console, 135
installing Knative Serving, 118-128
invoking Knative Service, 135-137
public mirror, 120
verifying Knative Service, 135-137

OpenShift Serverless (see OpenShift)
Operator Lifecycle Manager, 117
OperatorHub UI, 120
OperatorHub.io, 117
Operators, 73, 117
Overview panel (Knative Serving - Revision

HTTP Requests dashboard), 85

P
patch command, 72
percent attribute, 27
Persistence, as feature of messaging-based

architecture, 58
pod warming, 40
PodSpec (Kubernetes), 20
preference service, 74
prime-generator service, 38, 41
PROFILE_NAME environment variable, 4
Prometheus

about, 69
deploying, 69-71
enabling for metrics collection, 72

Q
Quarkus Java application, 113

142 | Index

querying Kubernetes resources, 14-15

R
Reactive web application, 113
readiness probe, 21
recommendation service, 74
Red Hat Developer account, 118
Redis, 117
request spikes, configuring Knative Service to

handle, 37-39
Request Volume panel (Knative Serving - Revi‐

sion HTTP Requests dashboard), 85
requests per second metric, 33
Resource Usage panel (autoscale debugging

dashboard), 78
Response Volume panel (Knative Serving -

Revision HTTP Requests dashboard), 85
restricting Knative Service visibility, 76-81
revision, 23
Revision Pod Counts panel (autoscale debug‐

ging dashboard), 78
revisionName attribute, 27
revisions, distributing traffic between Knative

Service, 26
running Apache Camel-K integrations as Kna‐

tive serverless services, 100-102

S
scale-to-zero, 33, 35
scale-to-zero-grace-period, 35
Server-Sent Events (SSE), 107
serverless integration patterns, 93-116

about, 93
applying Enterprise Integration Patterns

with Apache Camel-K, 107-109
configuring Apache Camel-K for speed, 95
deploying data processor, 111-113
deploying data producer, 109-111
deploying event subscribers, 113
displaying CloudEvents (CE) messages, 104
filtering data with Knative Eventing,

114-116
installing Apache Camel-K, 94
logging CloudEvents (CE) messages, 104
running Apache Camel-K integrations as

Knative serverless services, 100-102
using Apache Camel-K, 93-116
using Knative Eventing with Apache Camel-

K, 103

wiring CamelSource to Knative Eventing
Sink, 104-106

writing Apache Camel-K integration, 96-99
Serverless Operator, 123
serverless-style architecture, 33
service-pinned.yaml, 29
Sieve of Eratosthenes, 38
SinkBindings, 46
sleep parameter, 39
Sonatype Nexus, 95
Source to Sink, 43
sourcing Apache Kafka events with Knative

Eventing, 53-56
spec block, 20
SSE (Server-Sent Events), 107
stable-window, 35
stern tool, 1, 3
Strimzi, 50
subscriptions, 44, 59-63
switching namespaces, 13

T
tag attribute, 27
termination period, 36
tools, installing required, 1-4
tracing Knative Services with Jaeger, 88-92
traffic, distributing between Knative Service

revisions, 26
Triggers

about, 44
event trigger, 108
using, 63-68

twelve-factor app, 19

U
updating Knative Service configurations, 23-26
upto parameter, 39
usage patterns, 43-45

V
verifying

container environment, 12-15
Knative Service, 135

ver_knas, 137
VM_DRIVER environment variable, 4

W
watch command, 14, 36

Index | 143

watch tool, 1, 3
webhook infrastructure component, 11
wiring CamelSource to Knative Eventing Sink,

104-106
writing Apache Camel-K integration, 96-99

X
x-b3 headers, 72

Y
YAML resources, 19
yq v2.4.1 tool, 1, 3

144 | Index

About the Authors
Burr Sutter (@burrsutter) is a lifelong developer advocate, community organizer,
technology evangelist, and featured speaker at technology events around the globe—
from Bangalore to Brussels and Berlin to Beijing (and most parts in between). He is
currently Red Hat’s Director of Developer Experience. A Java Champion since 2005
and former president of the Atlanta Java User Group, Burr founded the DevNexus
conference, now the second-largest Java event in the United States. When spending
time away from the computer, he enjoys going off-grid in the jungles of Mexico and
the bush of Kenya. You can find Burr online at burrsutter.com.

Kamesh Sampath (@kamesh_sampath) is a Principal Software Engineer at Red Hat.
As part of his additional role as Director of Developer Experience at Red Hat and a
Google Developer Expert, he actively educates on Java, Kubernetes/OpenShift, Serv‐
icemesh, and Serverless technologies. With a career spanning close to two decades,
most of Kamesh’s career was with the services industry helping various enterprise
customers build Java-based solutions. Kamesh has been a contributor to open source
projects for more than a decade, and he now actively contributes to projects like Kna‐
tive, Camel-K, Quarkus, Eclipse Che, etc. As part of his developer philosophy he
strongly believes in LEARN MORE, DO MORE, and SHARE MORE! You can con‐
nect with Kamesh on GitHub at github.com/kameshsampath or LinkedIn at
linkedin.com/in/kameshsampath, and can find his blog at developers.redhat.com.

https://twitter.com/burrsutter
http://burrsutter.com
https://twitter.com/kamesh_sampath
https://developers.google.com/community/experts/directory/profile/profile-kamesh_sampath
https://github.com/kameshsampath
https://linkedin.com/in/kameshsampath
https://developers.redhat.com/blog/author/kameshsampath/

Colophon
The animal on the cover of Knative Cookbook is a Steller’s eider duck (Polysticta stel‐
leri). This species of sea duck is native to the Arctic, breeding and nesting in northern
Alaska, Russia, and Siberia, and spending winters in the Alaskan peninsula and the
Aleutian Islands. The Steller’s eider is also called Igniquaqtuq or “the bird that sat in
fire” by the Iñupiat people due to the “burnt” coloring of the male’s belly.

The Steller’s eider duck is the smallest of the eiders, and are more agile than the oth‐
ers both in flight and on land. They can grow up to 18 inches and have a large head
with a long bill and tail. Males are typically more colorful, with a distinctive white
head and shoulder patches, tan and deep brown shading on the underbelly, black eye
spots, and a blue-black collar around the neck that extends down the back and tail.
Females are mostly deep brown, but both have iridescent blue wing patches edged in
white. While at sea, the Steller’s eider feeds on mollusks, crustaceans, echinoderms,
and small fish; on the tundra they eat a number of aquatic insects, as well as grasses,
sedges, and pondweed.

These ducks travel in flocks for most of the year, migrating side by side a few feet
above the water along the coast. They migrate north to breed beginning in late April
and reach their nesting sites by early June. Females will remain on the breeding
grounds until the new chicks are able to fly, but the males will leave in early July to
molt. Steller’s eiders are solitary breeders that pair-bond during the winter. They
court in groups of up to seven males per single female, performing courtship displays
and showing aggression to one another. Females build nests and incubate their eggs
alone.

The Steller’s eider is categorized as a vulnerable species by the International Union for
Conservation of Nature. Threats to the duck include natural predators such as foxes
and snowy owls, as well as lead poisoning, contaminants, and changes in the marine
environment over time. Many of the animals on O’Reilly covers are endangered; all of
them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Red Hat
	Copyright
	Table of Contents
	Preface
	Why We Wrote This Book
	Who Should Read This Book
	Conventions Used in This Book
	Using Code Examples
	Staying Up to Date
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Reviewers
	O’Reilly
	From the Authors

	Chapter 1. Getting Started with Knative
	1.1 Installing the Required Tools
	Problem
	Solution
	Discussion

	1.2 Setting Up a Kubernetes Cluster
	Problem
	Solution
	Discussion

	1.3 Installing the Internal Kubernetes Container Registry
	Problem
	Solution
	Discussion

	1.4 Configuring Container Registry Aliases
	Problem
	Solution
	Discussion

	1.5 Installing Istio
	Problem
	Solution
	Discussion

	1.6 Installing Knative
	Problem
	Solution
	Discussion

	1.7 Verifying the Container Environment
	Problem
	Solution
	Discussion

	Creating Kubernetes Namespaces for This Book’s Recipes
	Why Switch Namespaces?

	Querying Kubernetes Resources

	Chapter 2. Understanding Knative Serving
	Knative Serving Deployment Model
	Before You Begin

	2.1 Deploying a Knative Service
	Problem
	Solution
	Discussion

	2.2 Updating a Knative Service Configuration
	Problem
	Solution
	Discussion

	2.3 Distributing Traffic Between Knative Service Revisions
	Problem
	Solution
	Discussion

	2.4 Applying the Blue-Green Deployment Pattern
	Problem
	Solution
	Discussion

	2.5 Applying the Canary Release Pattern
	Problem
	Solution
	Discussion

	Chapter 3. Autoscaling Knative Services
	3.1 Configuring Knative Service for Autoscaling
	Problem
	Solution
	Discussion

	3.2 Observing Scale-to-Zero
	Problem
	Solution
	Discussion

	3.3 Configuring Your Knative Service to Handle Request Spikes
	Problem
	Solution
	Discussion

	3.4 Cold Start Latency
	Problem
	Solution
	Discussion

	Chapter 4. Knative Eventing
	Usage Patterns
	Before You Begin

	4.1 Producing Events with Eventing Sources
	Problem
	Solution
	Discussion

	4.2 Receiving Events with Knative Eventing Sinks
	Problem
	Solution
	Discussion

	4.3 Deploying a Knative Eventing Service
	Problem
	Solution
	Discussion

	4.4 Connecting a Source to the Service
	Problem
	Solution
	Discussion

	4.5 Deploying an Apache Kafka Cluster
	Problem
	Solution
	Discussion

	4.6 Sourcing Apache Kafka Events with Knative Eventing
	Problem
	Solution
	Discussion

	4.7 Autoscaling with Apache Kafka and Knative Eventing
	Problem
	Solution
	Discussion

	4.8 Using a Kafka Channel as the Default Knative Channel
	Problem
	Solution
	Discussion

	4.9 Using Knative Channels and Subscriptions
	Problem
	Solution
	Discussion

	4.10 Using Knative Eventing Brokers and Triggers
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Observability
	5.1 Deploying Prometheus and Grafana
	Problem
	Solution
	Discussion

	5.2 Enable Prometheus for Metrics Collection
	Problem
	Solution
	Discussion

	5.3 Installing Jaeger
	Problem
	Solution
	Discussion

	5.4 Deploying Observable Test Services
	Problem
	Solution
	Discussion

	5.5 Customizing the kubectl Output Columns
	Problem
	Solution
	Discussion

	5.6 Restricting Knative Service Visibility
	Problem
	Solution
	Discussion

	Grafana Dashboards
	Autoscale Debugging

	5.7 Monitoring Autoscaling Metrics of a Knative Service
	Problem
	Solution
	Discussion

	5.8 Monitoring HTTP Performance Metrics of a Knative Service
	Problem
	Solution
	Discussion

	5.9 Tracing Knative Services with Jaeger
	Problem
	Solution
	Discussion

	Chapter 6. Serverless Integration Patterns Using Apache Camel-K
	6.1 Installing Camel-K
	Problem
	Solution
	Discussion

	6.2 Configuring Camel-K to Build Faster
	Problem
	Solution
	Discussion

	6.3 Writing a Camel-K Integration
	Problem
	Solution
	Discussion

	6.4 Running Camel-K Integrations as Knative Serverless Services
	Problem
	Solution
	Discussion

	6.5 Using Knative Eventing with Camel-K
	Problem
	Solution
	Discussion

	6.6 Logging and Displaying CloudEvents Messages
	Problem
	Solution
	Discussion

	6.7 Wiring a CamelSource to a Knative Eventing Sink
	Problem
	Solution
	Discussion

	6.8 Applying Enterprise Integration Patterns with Camel-K
	Problem
	Solution
	Discussion

	6.9 Deploying a Data Producer
	Problem
	Solution
	Discussion

	6.10 Deploying a Data Processor
	Problem
	Solution
	Discussion

	6.11 Deploying an Event Subscriber
	Problem
	Solution
	Discussion

	6.12 Filtering Data with Knative Eventing
	Problem
	Solution
	Discussion

	Chapter 7. Knative on OpenShift
	7.1 Installing Knative Serving
	Problem
	Solution
	Discussion

	7.2 Deploying a Knative Service
	Problem
	Solution
	Discussion

	7.3 Verifying and Invoking a Knative Service
	Problem
	Solution
	Discussion

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

